

Lecture Notes in Computer Science 3791
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Asaf Adi Suzette Stoutenburg
Said Tabet (Eds.)

Rules and
Rule Markup Languages
for the Semantic Web

First International Conference, RuleML 2005
Galway, Ireland, November 10-12, 2005
Proceedings

13

Volume Editors

Asaf Adi
Haifa University, IBM Research Lab in Haifa
Mount Carmel, 31905 Haifa, Israel
E-mail: adi@il.ibm.com

Suzette Stoutenburg
MITRE Corporation
1155 Academy Park Loop, Colorado Springs, CO 80910, USA
E-mail: suzette@mitre.org

Said Tabet
RuleML Initiative
24 Magnolia Road, Natick, MA 01760, USA
E-mail: stabet@ruleml.org

Library of Congress Control Number: 2005935452

CR Subject Classification (1998): H.4, H.3, I.2, C.2, H.5, K.4, F.3

ISSN 0302-9743
ISBN-10 3-540-29922-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29922-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11580072 06/3142 5 4 3 2 1 0

Preface

RuleML 2005 was the first international conference on rules and rule markup languages
for the Semantic Web, held in conjunction with the International Semantic Web Con-
ference (ISWC) at Galway, Ireland. With the success of the RuleML workshop series
came the need for extended research and applications topics organized in a conference
format. RuleML 2005 also accommodated the first Workshop on OWL: Experiences
and Directions.

Rules are widely recognized to be a major part of the frontier of the Semantic Web,
and critical to the early adoption and applications of knowledge-based techniques in e-
business, especially enterprise integration and B2B e-commerce. This includes knowl-
edge representation (KR) theory and algorithms; markup languages based on such KR;
engines, translators, and other tools; relationships to standardization efforts; and, not
least, applications. Interest and activity in the area of rules for the Semantic Web has
grown rapidly over the last five years. The RuleML 2005 Conference was aimed to be
this year’s premiere scientific conference on the topic. It continued in topic, leadership,
and collaboration with the previous series of three highly successful annual interna-
tional workshops (RuleML 2004, RuleML 2003 and RuleML 2002). The theme for
RuleML 2005 was rule languages for reactive and proactive rules, complex event pro-
cessing, and event-driven rules, to support the emergence of Semantic Web applications.

Special highlights of the RuleML 2005 conference included the keynote address
by Sir Tim Berners- Lee, Director of W3C. His talk, titled “Web of Rules”, discussed
whether knowledge can be represented in a web-like way using rules, so as to derive
serendipitous benefit from the unplanned reuse of such knowledge. The two other in-
vited papers were by Dr. Opher Etzion of IBM Haifa Labs entitled “Towards an Event-
Driven Architecture: An Infrastructure for Event Processing” and by Dr. Susie Stephens
of Oracle USA on the application of Semantic Web technologies in life sciences enti-
tled “Enabling Semantic Web Inferencing with Oracle Technology: Applications in Life
Sciences”.

We would like to thank our Steering and Program Committees as well as all col-
leagues who submitted papers to RuleML 2005. We would also like to thank the orga-
nizers of ISWC and the OWL Workshop for their cooperation and partnership. Special
thanks go to IBM Haifa, Israel, for sponsoring RuleML 2005. Finally, we would like to
thank GoWest for their conference planning services.

November 2005 Asaf Adi
Suzette Stoutenburg

Said Tabet

Organization

Conference Program Co-chairs

Asaf Adi, IBM, Israel
Suzette Stoutenburg, The MITRE Corporation, USA
Said Tabet, The RuleML Initiative, USA

Conference General Co-chairs

Harold Boley, National Research Council and University of New Brunswick, Canada
Benjamin Grosof, Massachusetts Institute of Technology, USA

Steering Committee

Asaf Adi, IBM, Israel
Grigoris Antoniou, University of Crete, FORTH, Greece
Harold Boley, National Research Council and University of New Brunswick, Canada
Benjamin Grosof, Massachusetts Institute of Technology, USA
Mike Dean, BBN Technologies, USA
Dieter Fensel, Digital Enterprise Research Institute (DERI),

National University of Ireland, Ireland
Michael Kifer, State University of New York at Stony Brook, USA
Steve Ross-Talbot, Pi4 Technologies, USA
Suzette Stoutenburg, The MITRE Corporation, USA
Said Tabet, The RuleML Initiative, USA
Gerd Wagner, Brandenburg University of Technology at Cottbus, Germany

Program Committee

Grigoris Antoniou, University of Crete, FORTH, Greece
Nick Bassiliades, Aristotle University of Thessaloniki, Greece
Harold Boley, National Research Council and University of New Brunswick, Canada
Mike Dean, BBN Technologies, USA
Dieter Fensel, Digital Enterprise Research Institute (DERI),

National University of Ireland, Ireland
Benjamin Grosof, Massachusetts Institute of Technology, USA
Guido Governatori, University of Queensland, Australia
Michael Kifer, State University of New York at Stony Brook, USA
Sandy Liu, National Research Council and University of New Brunswick, Canada
Jan Maluszynski, Linköping University, Sweden
Massimo Marchiori, W3C, MIT, USA and University of Venice, Italy

VIII Organization

Donald Nute, University of Georgia, USA
Royi Ronen, Technion, Israel
Michael Sintek, DFKI, Germany
Bruce Spencer, National Research Council and University of New Brunswick, Canada
Said Tabet, RuleML Initiative, USA
Dmitry Tsarkov, University of Manchester, UK
Carlos Viegas Damasio, Universidade Nova de Lisboa, Portugal
Gerd Wagner, Brandenburg University of Technology at Cottbus, Germany
Kewen Wang, Griffith University, Australia

Sponsors

IBM Haifa Labs

Table of Contents

Towards an Event-Driven Architecture:
An Infrastructure for Event Processing Position Paper . 1

Opher Etzion

Enabling Semantic Web Inferencing with Oracle Technology:
Applications in Life Sciences . 8

Susie Stephens

A Realistic Architecture for the Semantic Web . 17
Michael Kifer, Jos de Bruijn, Harold Boley, and Dieter Fensel

Active Rules in the Semantic Web: Dealing with Language Heterogeneity 30
Wolfgang May, José Júlio Alferes, and Ricardo Amador

Towards an Abstract Syntax and Direct-Model Theoretic Semantics for RuleML . 45
Adrian Giurca and Gerd Wagner

A Semantic Web Framework for Interleaving Policy Reasoning
and External Service Discovery . 56

Jinghai Rao and Norman Sadeh

Reactive Rules-Based Dependency Resolution
for Monitoring Dynamic Environments . 71

Dagan Gilat, Royi Ronen, Ron Rothblum, Guy Sharon, and Inna Skarbovsky

Towards Discovery of Frequent Patterns in Description Logics with Rules 84
Joanna Józefowska, Agnieszka Ławrynowicz, and Tomasz Łukaszewski

Design and Implementation of an ECA Rule Markup Language 98
Marco Seiriö and Mikael Berndtsson

Extending the SweetDeal Approach for e-Procurement
Using SweetRules and RuleML . 113

Sumit Bhansali and Benjamin N. Grosof

Using SWRL and OWL to Capture Domain Knowledge
for a Situation Awareness Application Applied to a Supply Logistics Scenario . . . 130

Christopher J. Matheus, Kenneth Baclawski, Mieczyslaw M. Kokar,
and Jerzy J. Letkowski

A Semantic Web Based Architecture for e-Contracts in Defeasible Logic 145
Guido Governatori and Duy Pham Hoang

X Table of Contents

Merging and Aligning Ontologies in dl-Programs . 160
Kewen Wang, Grigoris Antoniou, Rodney Topor, and Abdul Sattar

A Visual Environment for Developing Defeasible Rule Bases
for the Semantic Web . 172

Nick Bassiliades, Efstratios Kontopoulos, and Grigoris Antoniou

Flavours of XChange, a Rule-Based Reactive Language for the (Semantic) Web . . 187
James Bailey, François Bry, Michael Eckert, and Paula-Lavinia Pătrânjan

Rule-Based Framework for Automated Negotiation: Initial Implementation 193
Costin Bădică, Adriana Bădiţă, Maria Ganzha, Alin Iordache,
and Marcin Paprzycki

Uncertainty and RuleML Rulebases: A Preliminary Report 199
Giorgos Stoilos, Giorgos Stamou, Vassilis Tzouvaras, and Jeff Z. Pan

Nested Rules in Defeasible Logic . 204
Insu Song and Guido Governatori

ContractLog: An Approach to Rule Based Monitoring
and Execution of Service Level Agreements . 209

Adrian Paschke, Martin Bichler, and Jens Dietrich

The OO jDREW Reference Implementation of RuleML . 218
Marcel Ball, Harold Boley, David Hirtle, Jing Mei, and Bruce Spencer

Author Index . 225

A. Adi et al. (Eds.): RuleML 2005, LNCS 3791, pp. 1–7, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Towards an Event-Driven Architecture:
An Infrastructure for Event Processing Position Paper

Opher Etzion

IBM EDA Initiative Leadership Team
opher@il.ibm.com

Abstract. Multiple business factors have emerged to accelerate the necessity of
event-driven functionality and make it part of the main-stream computing, in-
stead of a niche technology. Consequently, there is now focus on using high-
level software constructs to build these applications. This paper presents a vi-
sion for such high-level features and architecture. This paper explains why
“event-driven applications” becomes an emerging area, explains the basic ter-
minology of EDA, explains the relationship to business rules, and sets some di-
rections for the future of this discipline.

1 Introduction and Motivation

Event-driven applications are those which respond to the occurrence of events. This
type pf processing is not new, and can be found over the history of computing, start-
ing from exception handling in programming languages, passing through concepts
and disciplines such as: active databases [1], publish/subscribe systems [2], network
and system management [3] and business activity management [4]. Recently there is
an increase in the interest in industry in this area, indicated from analysts’ reports,
from the sharp increase of start-ups in this area, and product announcements by appli-
cation middleware and database vendors. This is an indication that event-driven pro-
gramming moves from being used at some niches to the main stream of program-
ming, and thus it is cost-effective to construct general tools that enable easy
construction and maintenance of such applications. The contemporary business driv-
ers for these directions are:

1. Enforcement of compliance with regulations inside the process (some times in
“right-time” fashion)

2. The drive for expense reduction in back offices that increase the demand for more
automation (e.g. automated exception handling)

3. Increasing complexity of inter process integration that require agility and flexibil-
ity;

4. Technology developments such as RFID that increase the scale and scope of event
based data

5. Industry trends such as Business Activity Management, Real-Time Enterprise,
Business Performance Management that place a demand on software infrastruc-
ture to deliver the event data to drive these high level objectives.

The rest of this position paper is structured in the following way. Section 2 ex-
plains the type of applications, and shows a case study. Section 3 explains the princi-
ples of EDA, Section 4 discusses relation to business rules technology, and Section 5
concludes the paper with some future predictions.

2 Opher Etzion

2 Event-Driven Applications
Event-driven functionality is an enabler for the IBM’s vision of the “on demand”
enterprise, it enables enterprises to make “just in time” reactions to eliminate “worst
case” expenses, it enables enterprises to improve control over their operations, and
eliminate getting to critical situations, it enables to save cost by providing automation
to exception handling, and it is enables loosely coupled integration among processes
and systems, improving the agility of application integrations.

Table 1 shows classification of these applications along with the associated busi-
ness value.

Table 1. Classification of event-driven applications

Type Examples Business Value
1. Agile
Process
Integration

Time Critical Target-
ing (Military)
EAI Integration hub
(Telco)
Just-in-time car rental
(Travel and Transpor-
tation)
Trade processing (Fi-
nancial Markets)

Providing integration between various systems
based on event input. Enables to support ap-
plications that require dynamic composition of
various business processes, based on event
processing.
Enables to perform operations just-in-time and
not in advance, thus eliminates excessive cost.

2. Autonomic
behavior in
business
cases

Straight Through Proc-
essing (Financial Mar-
kets)
Automatic policy
setting (Operational
Resilience)
Loan and mortgages
decision support
(Banking)
Automated shipping
and receiving based on
RFID (Distribution)
London Congestion
billing (Travel and
Transportation)

Reducing expenses in back offices by auto-
mating exception handling processes.
Improving business decision process, by link-
ing decisions with business objectives.

3. Awareness
to Business
Situations

Anti Money Launder-
ing (Banking)
Fraud Detection (mul-
tiple industries)
e-Pedigree (Pharma-
ceutical)
Promotion Evaluation
(Retail)

Providing the ability of timely identification
of Business situations that requires reaction,
and avoid critical situations. This is an enabler
for run-time enforcement of regulations.

4. Change
Management/
Impact
analysis

Design collaboration
(PLM / Automotive)
 Authorization man-
agement (Security)
Compensation man-
agement (Insurance)

Provides the impact of a change, allows auto-
matic propagation of system and ensuring
consistency throughout systems.

Towards an Event-Driven Architecture 3

Table 1. Continued

Type Examples Business Value
5. Delivery of
information
services

Information services in
mobile devices (Telco)
Stock market informa-
tion (Financial Markets)
Customer notification
system (Banking)

Enables highly personalized information
services, extending the capabilities of
publish/subscribe systems.

6. Management
of services and
processes

Information service
delivery management
(Telco)
Management of Billing
and charging (Telco)

Management of service quality agreements
and key performance indicators. Event-
driven functions are enablers for this type
of applications.

7. Proactive
systems

Check volume predic-
tion and management
(Banking)
 Design validity check
(PLM/Automotive)

Enabler for proactive behavior in which a
system can eliminate possible problems
due to predictor’s analysis.

Note, that this classification is not a partition; an application can combine applica-
tion integration, awareness to business situations and automatic behavior in a single
application. The idea is to build all the required event-driven functionality in a seam-
less fashion.

3 Toward an Event-Driven Architecture
Fig. 1 shows an example of event processing within a trade example. Table 2 explains
the various event processing artifacts, we call event processing mediations.

Table 2. Event Processing mediations

Event Proc-
essing
mediations ID

Explanation

EP1 Enrich: Add attributes to the order event (e1) based on a query in a data-
base result in enriched
order event (e3)

EP2 Validate: Perform validation test on the enriched order event (e3), may
result in an alert event (e4).

EP3 Aggregate: Match the enriched order event (e3) with the appropriate allo-
cation event (e2), creating an allocated order event (e5)

EP4 Validate: Check credit for the allocated order event (e5), possibly revise
order to get confirmed order (e6)

EP5 Route: Make a decision to which exchange the confirmed order (e6)
should be sent.

EP6 Route: Send time-out alert (e8) for not getting ack. From the exchange (e7)
for the confirmed order (e6)

EP7 Compose: Match seller and buyer (both confirmed orders) according to
fairness criteria and create a settlement event (e10)

EP8 Route: Retrieve historical order events (e9) as part of the compliance
process.

4 Opher Etzion

TRADES
event topic

E3: ORDERS
event topic

publish

Asset
Manager

Compile and
deploy

ESB

Compliance process in
WBI-process server

EP2:
validate

EP2:
Trigger +
retrieve

Exchange A places
orders and emits

trades (standalone
client)

EP3:
Aggregate:
By ALLOC

Event
metadata

ALLOC-
ATIONS

event topic

EP4:
Validate:
CREDIT
CHECK

EP6:
No trade
in time
Trigger

Compile and
deploy

PLACED
ORDERS event

topic

EP1: order enrich
(in WAS or WBI MB)

buy/sell orders
(requests)

Standalone
ESB client

EP5:
ROUTE to
exchange

publish

Trade Processing Example

Mediation specification – high level
templates

Customer
DB

e1

e2

e3

e4

e5

e6

e7

e10
e8

e9

EP7:
Match

EP8:
Ask

Fig. 1. An example of an event-driven application

The main challenges in setting up this type of applications are:

1. Providing architecture with standard interfaces so that:
a. Event sources can emit events in various formats easily
b. Event consumers can obtain events easily
c. Different event processing components can plug in and interoperate
d. On-line and historical events can be seamlessly processed

2. A standard event processing language will be used as a basis for all processing,
and will enable to make it main-stream computing, independent in proprietary
languages.

3. Develop tools that will enable to perform part of it as appropriate for user comput-
ing.

Our architecture composed of sources and consumers of events and to the event
processing mediations. An event processing mediation is a triplet <selector, proces-
sor, emitter>, where:

1. Selector: selects the events that participate in the actual processing, usually by
satisfying some pattern on multiple event streams (example: select a pair that con-
sists of buy event and sell event that satisfy a complex pattern).

2. Processor: validate, enrich, compose etc…, creates new event.
3. Emitter: a decision process about the destination of the produced event.

Event processing is a descendent of concepts like “composite events” [5] and
“situation detection” [6], but also has some partial overlap with the area of data
stream management [7].

Towards an Event-Driven Architecture 5

4 Relation to Business Rules
Some of the "frequently asked questions" about event processing refers to the rela-
tionship between event processing and business rules. This section will revisit the
main features of business rules and position event processing in that context.

4.1 Introduction to Business Rules

The name "business rules" refers to a programming style that is intended to take some
of the business logic out of the ordinary programming, to achieve more agility.

Barbara Von Hale [8], one of the industry business rules leaders, classifies rules
according to the way they are activated. The two rule classes are:

Service-oriented rules which are activated by explicit request. Business rule prod-
ucts such as: Blaze Advisor, and ILOG's Jrules are examples.
Data-change-oriented rules which are activated by change in data. Business rule
products such as: Versata and USOFT are examples.

Another classification is based on what the business rule does. This classification
was done by the Business Rules Group:

Derivation rules: a statement of knowledge that is derived from other knowledge
in the business. This is further classified into:
o Mathematical calculations
o Inference of structural assertions
Action assertion: a statement of a constraint or condition that limits or controls the
actions of the enterprise.

4.2 What Is the Relationship Between Event Processing and Business Rules?

Event processing functionality can be expressed by the programming style of busi-
ness rules.

Event processing can roughly be partitioned to two types of functionality:

Event derivation: complex events are derived as a function of other events (selec-
tion + composition)
Triggering: actions are triggered by (possibly complex) event.

While these type of processing can be expressed in the rule style, the major differ-
ence between event processing and other rule types is that the subject matter are
events rather than data or structural assertions.

Table 3 compares traditional business rules and event processing.
Note that regular business rules can also be embedded in event processing, exam-

ple: routing decisions can be done by decision trees, validation decision can employ
rules.

5 Future Directions
The area of event processing now is in its early phases, there are some products, and
some applications, but it is still climbing the hill towards prime time. Several devel-
opments will accelerate it use:

6 Opher Etzion

Table 3. Comparison between event processing and business rules

Dimen-
sion
Name

Traditional business rules Event Processing

Rule
input

Facts - predicates in first order logic, typi-
cally relations among entities (e.g. John is
Jim's manager)
 Data-elements – values of attributes (e.g.
John's salary value).

Events – as defined in this
document (e.g. John's salary
promotion).
The input is mostly event, but
event processing may consult
with facts and data-elements.

Rule
output

Knowledge creation:
Inference for facts (e.g. if John is Jim's
manager, and John is Dan's manager, and
peer is defined as two employees reporting
to the same manager the system can infer
that Jim and Dan are peers)
Derivation for data (e.g. the account-balance
= the sum of all deposits minus the sum of
all withdrawals)
Behavioral:
Enacts an action (IF-THEN) example: IF
there is a traffic jam than re-calculate the
route
Prevents an action example: if a transaction
updates the salary of an employee to be
higher than the salary of his manager, then
REPAIR THE TRANSACTION to the
maximal raise that does not violate the con-
straint

Complex Event Detection –
(e.g. the complex event – at
most two bike sells within the
last hour)
In event processing the created
knowledge is in form of new
event instances.
Behavioral rules where the
condition is a complex event.
Both type of behavioral sys-
tems can be event-driven

Rule
invoca-
tion

By Request: Rule is activated by specific
request or as part of another request (e.g.
query). Called: backward chaining (in infer-
ence rules, e.g. while answering the question
about finding all the peers of Dan), lazy
evaluation (in derivation rules, e.g. when
calculating the final price).
By Trigger: Rule is activated when there is
some change in the universe in the rule's
scope. Called: forward chaining (in inference
rules, when a fact is added), eager evaluation
(in derivation rules, when there is a with-
drawal from the account).

Event processing functionality
can be invoked both by trigger
and by request. By trigger is
detecting the complex event
anytime that the condition is
matched. By request --- process
events in retrospect .

Rule
process-
ing type

Snapshot processing: The rule processes a
single snapshot of the universe (regular
SQL).
Temporal processing: The rule processes a
set of changes in the universe done over time
(e.g. OLAP tools for data)

Temporal processing is one of
the main characteristics of
event processing.

Towards an Event-Driven Architecture 7

1. Standardization: The ability to have standard event schemata, standard APIs, and
standard event processing language will make events available and event process-
ing services a major service.

2. Event extraction: There are many sources (such as: news streams, video streams,
Blogs, audio files) that include events, but the extraction of these events to form in
which events can be processed is very preliminary today. This area will be more
mature in a few years.

3. Embedding event driven behavior in programming paradigms: being part of mod-
eling and case tools, introduction into business process management tools.

4. Creation of highly scalable infrastructure that supports high rates of event proc-
essing.

References

1. Jennifer Widom, Stefano Ceri: Active Database Systems: Triggers and Rules For Advanced
Database Processing. Morgan Kaufmann 1996

2. Roberto Baldoni, Mariangela Contenti, Antonino Virgillito: The Evolution of Pub-
lish/Subscribe Communication Systems. Future Directions in Distributed Computing 2003:
137-141

3. T. T. Mai Hoang: Network Management: Basic Notions and Frameworks. The Industrial
Information Technology Handbook 2005: 1-15

4. Jun-Jang Jeng, David Flaxer, Shubir Kapoor: RuleBAM: A Rule-Based Framework for
Business Activity Management. IEEE SCC 2004: 262-270

5. Shuang Yang, Sharma Chakravarthy: Formal Semantics of Composite Events for Distrib-
uted Environments. ICDE 1999: 400-407

6. Asaf Adi, Opher Etzion: Amit - the situation manager. VLDB J. 13(2): 177-203 (2004)
7. Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito, Itaru Nishizawa,

Justin Rosenstein, Jennifer Widom: STREAM: The Stanford Stream Data Manager.
SIGMOD Conference 2003: 665

8. Barbara Von Halle. Business Rules Applied: Building Better Systems Using the Business
Rules Approach Wiley, 2002.

A. Adi et al. (Eds.): RuleML 2005, LNCS 3791, pp. 8–16, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Enabling Semantic Web Inferencing
with Oracle Technology: Applications in Life Sciences

Susie Stephens

Oracle, 10 van de Graaff Drive, Burlington, MA 01803, USA
susie.stephens@oracle.com

Abstract. The Semantic Web has reached a level of maturity that allows RDF
and OWL to be adopted by commercial software vendors. Products that incor-
porate these standards are being used to help provide solutions to the increas-
ingly complex IT challenges that many industries face. Standardization efforts
for the Semantic Web have progressed to the point where efforts are starting in
the integration of ontologies and rules. This paper showcases the implementa-
tion of a Semantic Web rulebase in Oracle Database 10g, and provides exam-
ples of its use within drug discovery and development. A more detailed paper is
currently being prepared with Dr. Said Tabet of the RuleML initiative where a
more detailed design and specification is provided explaining the

1 Introduction

The current Web is an environment developed primarily for human users. The Seman-
tic Web intends to extend the use of the Web by making documents machine-
accessible and machine-readable [3]. A number of standards have been recommended
to achieve this goal, including Extensible Markup Language (XML), Resource De-
scription Framework (RDF), and Web Ontology Language (OWL) [6, 20, 21]. As
these standards reach maturity, commercial software vendors begin to incorporate the
technologies into their products. This trend is illustrated by support for RDF and
OWL in the Oracle Database and the integration of RDF metadata in Adobe images.

Having a language for sharing rules is often seen as the next step in promoting data
exchange on the Web [2]. Semantic Web rules would allow the integration, transfor-
mation and derivation of data from numerous sources in a distributed, scalable, and
transparent manner [10]. Rules would themselves be available as data on the Web,
and therefore would be available for sharing.

RuleML was the first initiative to bring rules to the Web with support for XML and
RDF [5]. It provides a modular lattice of rule sub-languages that have various levels
of expressiveness. The Semantic Web Rule Language (SWRL), acknowledged by
W3C as a member submission in 2004, is a result of continued efforts in this area
[17]. SWRL is layered on existing W3C standards, and integrates OWL and
RuleML [4].

The life sciences industry has been taking advantage of rules in drug discovery and
development for many years. The use of rules covers areas as broad as the identifica-
tion of siRNA for gene knockouts [30], the prediction of oral bioavailability of
chemical compounds [18], the prediction of human drug metabolism and toxicity of
novel compounds [11], decision support rules for patient diagnosis and clinical trial
patient selection [26], the determination of the progression of cancer during treatment

Enabling Semantic Web Inferencing with Oracle Technology 9

[24], and meeting regulatory requirements from organizations such as the U.S. Food
and Drug Administration (FDA) and the European Medicines Evaluation Agency
(EMEA).

The life sciences industry has been experiencing productivity challenges over the
last few years, with the cost of drug discovery soaring, and the number of new drugs
to market declining rapidly [14]. As a consequence, the FDA has provided recom-
mendations as to the actions drug discovery companies should take in order to im-
prove product development [12].

Many of the recommendations require the effective sharing of data along the drug
discovery and development pipeline. This has proven challenging for organizations to
achieve. The difficulties stem from data being made available in many formats, for
example, different tab-delimited files formats, XML schemas, and relational models.
The task of data integration is made more challenging because the data models change
as science progresses, and individuals learn that additional data is relevant to their
studies. Further, there is acronym collision across the data sources, and data is pro-
vided in many different data types, for example graphs, images, text, and 2D and 3D
formats.

The Semantic Web is of considerable interest to the life sciences industry as it
promises the ability to overcome data integration challenges [29]. Many of the bene-
fits of the Semantic Web are derived from its very flexible model for data aggregation
and re-use [7, 23], along with semantic tagging of data [13, 19, 27]. Further, RDF can
be used to integrate both structured and unstructured data. The development of unique
identifier representations for both biological and chemical entities is also furthering
interest in the Semantic Web [8, 9].

Recommendations from the FDA for improving productivity also include using
biomarkers and modeling to determine the safety and efficacy profiles of drugs as
early as possible within the drug development process [12]. Many organizations are
consequently focusing on providing complex rules and models to help achieve these
goals.

Several companies in the life sciences industry have developed proprietary rule-
based systems for the identification of drug candidates. In drug discovery and devel-
opment, the rules for decision support and the information input in the rules reflects
the expertise and collective perspectives of senior researchers. Consequently, at pre-
sent, most decision support tools that address the scientific aspects of drug discovery
are the result of custom efforts. It would be highly beneficial if rules could be made
available in an interoperable language that takes advantage of the Semantic Web to
enable them to be shared across the life sciences community.

This paper discusses the impact of the Semantic Web on the life sciences. We de-
scribe the implementation of an RDF Data Model within Oracle Database 10g and its
use within a drug development scenario.

2 Oracle RDF Data Model

In Oracle Database 10g Release 2, a new data model has been developed for storing
RDF and OWL data. This functionality builds on the recent Oracle Spatial Network
Data Model (NDM), which is the Oracle solution for managing graphs within the
Relational Database Management System (RDBMS) [28]. The RDF Data Model

10 Susie Stephens

supports three types of database objects: model (RDF graph consisting of a set of
triples), rulebase (set of rules), and rule index (entailed RDF graph) [1, 22].

2.1 Model

There is one universe for all RDF data stored in the database. All RDF triples are
parsed and stored in the system as entries in tables under the MDSYS schema. An
RDF triple (subject, predicate, object) is treated as one database object. A single RDF
document that contains multiple triples will, therefore, result in many database ob-
jects.

The subjects and objects of triples are mapped to nodes in a network, and predi-
cates are mapped to network links that have their start node and end node as subject
and object, respectively. The possible node types are blank nodes, Uniform Resource
Identifiers (URIs), plain literals, and typed literals. The Oracle Database has a type
named URIType that is used to store instances of any URI, and is used to store the
names of the nodes and links in the RDF network.

2.2 Rulebase

Each RDF rulebase consists of a set of rules. Each rule is identified by a name, and
consists of an ‘IF’ side pattern for the antecedents, an optional filter condition that
further restricts the subgraphs, and a ‘THEN’ side pattern for the consequents.

A rule when applied to an RDF model may yield additional triples. An RDF model
augmented with a rulebase is equivalent to the original set of triples plus the triples
inferred by applying the rulebase to the model. Rules in a rulebase may be applied to
the rulebase itself to generate additional triples.

Oracle supplies both an RDF rulebase that implements the RDF entailment rules,
and an RDF Schema (RDFS) rulebase that implements the RDFS entailment rules.
Both rulebases are automatically created when RDF support is added to the database.
It is also possible to create a user-defined rulebase for additional specialized inferenc-
ing capabilities.

For each rulebase, a system table is created to hold rules in the rulebase, along with
a system view of the rulebase. The view is used to insert, delete and modify rules in
the rulebase.

2.3 Rules Index

A rules index is an object containing pre-computed triples that can be inferred from
applying a specified set of rulebases to a specified set of models. If a graph query
refers to any rulebases, a rule index must exist for each rulebase-model combination
in the query.

When a rule index is created, a view is also created of the RDF triples associated
with the index under the MDSYS schema. This view is visible only to the owner of
the rules index and to users with suitable privileges. Information about all rule in-
dexes is maintained in the rule index information view.

Enabling Semantic Web Inferencing with Oracle Technology 11

2.4 Query

Use of the SDO_RDF_MATCH table function allows a graph query to be embedded
in a SQL query. It has the ability to search for an arbitrary pattern against the RDF
data, including inferencing, based on RDF, RDFS, and user-defined rules. It can
automatically resolve multiple representations of the same point in value space (e.g.
“10” ^^xsd:Integer from “10” ^^xsd:PositiveInteger), and has The
SDO_RDF_MATCH function has been designed to meet most of the requirements
identified by W3C in SPARQL for graph querying [25].

The SDO_RDF_MATCH table function has the following attributes:

SDO_RDF_MATCH (
 query VARCHAR2,
 models SDO_RDF_MODELS,
 rulebases SDO_RDF_RULEBASES,
 aliases SDO_RDF_ALIASES,
 filter VARCHAR2
) RETURN ANYDATASET;

The ‘query’ attribute is a string literal with one or more triple patterns, usually con-
taining variables. A triple pattern is a triple of atoms enclosed in parentheses. Each
atom can be a variable, a qualified name that is expanded based on the default name-
space and the value of the alias parameter, or a full URI. In addition, the third atom
can be a numeric literal, a plain literal, a language-tagged plain literal, or a typed
literal.

The ‘models’ attribute identifies the RDF model or models to use. The ‘rulebases’
attribute identifies one or more rulebases whose rules are to be applied to the query.
The ‘models’ and ‘rulebases’ together constitute the RDF data to be queried.

The ‘aliases’ attribute identifies one or more namespaces, in addition to the default
namespaces, to be used for expansion of qualified names in the query pattern. The
following default namespaces are used by the SDO_RDF_MATCH table function.

(‘rdf’, ‘http://www.w3.org/1999/02/22-rdf-syntax-ns#’)
(‘rdfs’, ‘http://www.w3.org/2000/01/rdf-schema#’)
(‘xsd’, ‘http://www.w3.org/2001/XMLSchema#’)

The ‘filter’ attribute identifies any additional selection criteria. If this attribute is
not null, it should be a string in the form of a WHERE clause without the WHERE
keyword.

The SDO_RDF_MATCH table function returns an object of type ANYDATASET,
with elements that depend upon the input variables.

For each variable var that may be a literal (that is, for each variable that appears
only in the object position in the query pattern), the result elements have five attrib-
utes: var, var$RDFVTYP, var$RDFCLOB, var$RDFLTYP, and var$RDFLANG.
For each variable var that cannot take a literal value, the result elements have two
attributes: var and var$RDFVTYP. In both cases, var has the lexical value bound to
the variable; var$RDFVTYP indicates the type of value bound to the variable (URI,
LIT[literal], or BLN [blank node]), var$RDFCLOB has the lexical value bound to the
variable if the value is a long literal, var$RDFLTYP indicates the type of literal
bound if a literal is bound, and var$RDFLANG has the language tag of the bound

12 Susie Stephens

literal if a literal with language tag is bound. var$RDFCLOB is of type CLOB, while
all other attributes are of type VARCHAR2.

3 Rule-Based Drug Development Scenario

In clinical trials, information is typically gathered from hundreds of geographically
dispersed data sources. In the Semantic Web environment, it would be expected that
multiple ontologies would be utilized, thereby requiring support for mapping, integra-
tion, and translation. This objective cannot easily be achieved with ontology lan-
guages alone [15]. For example, ontology property chaining, dynamic information
and complex transactions can be expressed more easily in rule languages [16].

The rule-based drug development scenario demonstrates the use of a rule in the
critical task of identifying suitable patients for a clinical trial study. The identification
of patients for trials has proven very challenging to the life sciences industry. With the
move towards personalized medicine, it is becoming increasingly important that phy-
sicians are able to select appropriate patients for trials, in order that effective and safe
new drugs can be released.

In this example, male patients over 40 with high-grade prostatic intraepithelial
neoplasia (HGPIN) were selected for screening for chemoprevention of prostate can-
cer. The natural language representation of the rule is shown in Figure 1.

IF Patient is a male over 40
 AND Patient never had Prostate Cancer
 AND Patient condition is HGPIN
THEN Screen Patient for this Study

Fig. 1. Rule Example in Natural Language

Oracle has incorporated an RDF Data Model in Oracle Database 10g, which in-
cludes support for rules. The SDO_RDF_MATCH table function is invoked from
within SQL, and provides support for graph querying. The addition of graph capabili-
ties to SQL querying allows a powerful approach. For example, it enhances the rule
language with negation, and takes advantage of the proven scalability of the Oracle
platform. The encoding of the rule in Figure 1, is shown below in Figure 2, and the
query in Figure 3.

Antecedent:
 (?x1 rdf:type :Patient)
 (?x2 :isStudy :SWOG-9917)
 (?x1 :hasSex :Male)
 (?x1 :hasCondition "HGPIN"^^xsd:string)
 (?x1 :hasAge ?age)

Filter:
 age >= 40

Consequent:
 (?x1 :isScreenedForStudy ?x2)

Fig. 2. Oracle Rule example

Enabling Semantic Web Inferencing with Oracle Technology 13

SELECT patient
 FROM TABLE(SDO_RDF_MATCH(
 '(?patient :isScreenedForStudy ?study)
 (?study :isStudy :SWOG-9917)',
 SDO_RDF_Models(...), SDO_RDF_Rulebases(...),
 SDO_RDF_Aliases(...), null))
 MINUS
 SELECT patient
 FROM TABLE(SDO_RDF_MATCH(
 '(?patient :hasCondition "Prostate Cancer")',
 SDO_RDF_Models(...), SDO_RDF_Rulebases(...),
 SDO_RDF_Aliases(...), null));

Fig. 3. SDO_RDF_MATCH Table Function Query

In the life sciences, it is critical that rules can be exchanged between business part-
ners. SWRL FOL (First Order Logic) RuleML was developed with these require-
ments in mind. To demonstrate the translation that would be required between the
Oracle platform and SWRL FOL RuleML, the rule is implemented in Figure 4.

4 Discussion and Future Work

Rules are recognized as one of the most important components in the development of
the Semantic Web and a requirement prior to its deployment and scalability to real-
world systems. In this paper, we described the applicability of rules to the life sci-
ences domain.

The life sciences domain is of interest due to the heterogeneous and distributed na-
ture of the data. Information frequently needs to be integrated from many partner
organizations, which can be challenging to achieve due to differing data models,
missing data, acronym collision, and contradicting ontologies. The Semantic Web
promises to help the life sciences industry overcome many of these challenges.

Rules are used for many purposes within the life sciences. Some are made publicly
available (e.g. polices and regulation), while others are proprietary and are used to
help companies gain and sustain competitive advantage. The published rulebases
represent a good candidate for interchange within the Semantic Web. To advance
knowledge sharing within the bioinformatics and cheminformatics communities,
analytical workflow could also be made available using the interchange standard.

The implementation of an RDF Data Model by Oracle demonstrates the maturity of
Semantic Web technologies. The provision of a rulebase and rule index enables pre-
computed triples to be inferred from a specified set of rulebases and models. This
forward chaining inferencing adds value by minimizing the steps required to identify
entities of interest, and to capture complex relationships.

As part of our future work, we are planning to integrate the Oracle RDF inferenc-
ing engine with other reasoners, including the Oracle Application Server production
rule system. We are also planning to experiment with the interoperability of Oracle
technology with SWRL FOL RuleML rulebases. This work is presented in the up-
coming paper with Dr. Said Tabet.

14 Susie Stephens

<ruleml:Assert owlx:name="#Example">
 <owlx:Annotation>
 <owlx:Documentation>
 IF Patient is a male over 40 and Patient never had Prostate
 Cancer and Patient condition is HGPIN THEN Screen Patient
 for this Study
 </owlx:Documentation>
 </owlx:Annotation>
 <ruleml:Forall>
 <ruleml:Var type="Patient">x1</ruleml:Var>
 <ruleml:Var type="Study">x2</ruleml:Var>
 <ruleml:Var type="xsd:int">age</ruleml:Var>
 <ruleml:And>
 <swrlx:individualPropertyAtom swrlx:property="isPatient">
 <ruleml:var>x1</ruleml:var>
 </swrlx:individualPropertyAtom>
 <swrlx:individualPropertyAtom swrlx:property="isStudy">
 <ruleml:var>x2</ruleml:var>
 <ruleml:ind>SWOG-9917</ruleml:ind>
 </swrlx:individualPropertyAtom>
 <swrlx:individualPropertyAtom swrlx:property="hasSex">
 <ruleml:var>x1</ruleml:var>
 <owlx:Individual owlx:name="#male"/>
 </swrlx:individualPropertyAtom>
 <swrlx:datavaluedPropertyAtom
 swrlx:property="#hasCondition">
 <ruleml:var>x1</ruleml:var>
 <owlx:DataValue
owlx:datatype="http://www.w3.org/2001/XMLSchema#string">HGPIN
 </owlx:DataValue>
 </swrlx:datavaluedPropertyAtom>
 <swrlx:datavaluedPropertyAtom swrlx:property="#hasAge">
 <ruleml:var>x1</ruleml:var>
 <ruleml:var>age</ruleml:var>
 </swrlx:datavaluedPropertyAtom>
 <swrlx:builtinAtom
swrlx:builtin="http://www.w3.org/2003/11/swrlb#greaterThanOrEqual">
 <ruleml:var>age</ruleml:var>
 <owlx:DataValue
owlx:datatype="http://www.w3.org/2001/XMLSchema#int">40
 </owlx:DataValue>
 </swrlx:builtinAtom>
 <swrlx:individualPropertyAtom
 swrlx:property="isScreenedForStudy">
 <ruleml:var>x1</ruleml:var>
 <ruleml:var>x2</ruleml:var>
 </swrlx:individualPropertyAtom>
 </ruleml:And>
 </ruleml:Forall>
</ruleml:Assert>

Fig. 4. SWRL FOL RuleML Representation

Acknowledgements

We would like to acknowledge the Oracle Spatial group for the implementation of the
RDF Data Model.

Enabling Semantic Web Inferencing with Oracle Technology 15

References

1. Alexander, N., Lopez, X., Ravada, S., Stephens, S., Wang, J. (2004) RDF Data Model in
Oracle. http://lists.w3.org/Archives/Public/public-swls-ws/2004Sep/att-0054/W3C-RDF_
Data_Model_in_Oracle.doc

2. Berners-Lee, T. (2005) Infrastructure Roadmap: Stack of Expressive Power.
http://www.w3.org/2005/Talks/0517-boit-tbl/#[27].

3. Berners-Lee, T., Hendler, J. Lassila, O. (2001) The Semantic Web. Scientific American.
284, 5: 34-43.

4. Boley, H., Mei, J. (2005) Interpreting SWRL Rules in RDF Graphs, WLFM 2005.
http://www.inf.fu-berlin.de/inst/ag-nbi/research/swrlengine/SWRLinRDF.pdf

5. Boley, H., Tabet, S., Wagner, G. (2001) Design Rationale of RuleML: A Markup Language
for Semantic Web Rules. SWWS.
http://islab.hanyang.ac.kr/bbs/data/cse995/DesignRationaleRuleML.pdf

6. Bray, T., Paoli, J., Sperberg-McQueen, Maler, E., Yergeau, F. (2004) Extensible Markup
Language (XML) 1.0 (Third Edition). W3C Recommendation 04 February 2004.
http://www.w3.org/TR/2004/REC-xml-20040204/

7. Cheung, K., H., Yip, K., Y., Smith, A., deKnikker, R., Masiar A., Gerstein, M. (2005)
YeastHub: a semantic web use case for integrating data in the life sciences domain. Bioin-
formatics 21, i85-i96.

8. Clark, T., Martin, S., and Liefeld, T. (2004) Globally Distributed Object Identification for
Biological Knowledgebases. Brief. Bioinformatics. 5 (1), 59–70.

9. Coles, S. J., Day, N. E., Murray-Rust, P., Rzepa, H. S., Zhang, Y. (2005) Enhancement of
the Chemial Semantic Web through the use of InCHI Identifiers. Org. Biomol. Chem., 3,
1832-1834.

10. Dean, M. (2004) Semantic Web Rules: Covering the Use Cases. Rules and Rule Markup
Languages for the Semantic Web. 3rd Int. Workshop, RuleML 2004, Hiroshima, Japan,
Nov. 2004. Antoniou G., Boley, H. (Eds.) pp. 1-5.

11. DeWitte, R. (2003) Product Focused Drug Delivery. Drug Discovery July/Aguust 2003. 30-
33.

12. FDA. (2004) Innovation Stagnation. Challenge and Opportunity on the Critical Path to
New Medical Products. http://www.fda.gov/oc/initiatives/criticalpath/whitepaper.html

13. Gardner, S. (2005) Ontologies and semantic data integration. Drug Discovery Today 10,
1001-1007.

14. Gilbert J, Henske, P., Singh, A. (2003) Rebuilding Big Pharma's Business Model. In Vivo,
the Business & Medicine Report, Windhover Information, Vol. 21, No. 10, November
2003.

15. Golbreich, C. (2004) Combining Rule and Ontology Reasoners for the Semantic Web.
Rules and Rule Markup Languages for the Semantic Web. 3rd Int. Workshop, RuleML
2004, Hiroshima, Japan, Nov. 2004. Antoniou G., Boley, H. (Eds.) pp. 6-22.

16. Hawke, S., Tabet, S., de Sainte Marie, C. (2005) Rule Language Standardization. Report
from the W3C Workshop on Rule Languages for Interoperability.
http://www.w3.org/2004/12/rules-ws/report/

17. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M. (2004)
SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C Member
Submission 21 May 2004. http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

18. Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J. (1997) Experimental and com-
putational approaches to estimate solubility and permeability in drug discovery and devel-
opment settings. Adv. Drug Delivery Res. 23, 3-25.

19. Luciano, J. (2005) PAX of mind for pathway researchers. Drug Discovery Today 13, 938-
942.

16 Susie Stephens

20. Manola, F., Miller, E. (2004) RDF Primer. W3C Recommendation 10 February 2004.
http://www.w3.org/TR/rdf-primer/

21. McGuinness, D. L., van Harmelen, F. (2004) OWL Web Ontology Language Overview.
W3C Recommendation 10 February 2004. http://www.w3.org/TR/owl-features/

22. Murray, C. (2005) Oracle Spatial. Resource Description Framework (RDF) 10g Release 2
(10.2). http://download-west.oracle.com/otndocs/tech/semantic_web/pdf/rdfrm.pdf

23. Neumann, E., Miller E., Wilbanks, J. (2004) What the Semantic Web could do for the life
sciences. Biosilico 2, 228-236.

24. Padhani, A. R., Ollivier, L. (2001) The RECIST criteria: implications for diagnostics radi-
ologists. Br. J. Radiol. 74, 983-986

25. Prud’hommeaux, E., Seaborne, A. (2005) SPARQL Query Language for RDF. W3C Work-
ing Draft 21 July 2005. http://www.w3.org/TR/rdf-sparql-query

26. Salamone, S. (2005) Semantic Web Interest Grows. Bio-IT World
(http://www.bio-itworld.com/archive/microscope/document.2005-06-16.8341855754)
(2005).

27. Stephens, S., Musen, M. (2005) A novel ontology development environment for the life
sciences. BioOntologies Special Interest Group, Intelligent Systems for Molecular Biology.
http://bio-ontologies.man.ac.uk/download/stephens_bio_ontologies_submitted.doc

28. Stephens, S., Rung, J. Lopez, X. (2004) Graph Data Representation in Oracle Database
10g: Case studies in Life Sciences. IEEE Data Eng. Bull. 27, 61-67.

29. Weitzner, D. (2004) Summary Report – W3C Workshop on Semantic Web for Life Sci-
ences. http://www.w3.org/2004/10/swls-workshop-report.html

30. Yuan, B., Latek, R., Hossbach, M., Tuschl, T., Lewitter, F. (2004) siRNA Selection Server:
an automated siRNA oligonucleotide prediction server. Nucleic Acids Res. 32, W130-
W134.

A Realistic Architecture for the Semantic Web

Michael Kifer1, Jos de Bruijn2, Harold Boley3, and Dieter Fensel2

1 Department of Computer Science
State University of New York at Stony Brook

Stony Brook, NY 11794
kifer@cs.sunysb.edu

2 Digital Enterprise Research Institute (DERI),
University of Innsbruck, Austria

National University of Ireland, Galway
{jos.debruijn,dieter.fensel}@deri.org

http://www.deri.org/
3 Institute for Information Technology – e-Business,

National Research Council of Canada,
Fredericton, NB, E3B 9W4, Canada

Harold.Boley@nrc-cnrc.gc.ca

Abstract. In this paper we argue that a realistic architecture for the
Semantic Web must be based on multiple independent, but interoper-
able, stacks of languages. In particular, we argue that there is a very
important class of rule-based languages, with over thirty years of history
and experience, which cannot be layered on top of OWL and must be
included in the Semantic Web architecture alongside with the stack of
OWL-based languages. The class of languages we are after includes rules
in the Logic Programming style, which support default negation. We
briefly survey the logical foundations of these languages and then dis-
cuss an interoperability framework in which such languages can co-exist
with OWL and its extensions.

1 Introduction

An alternative architecture for the Semantic Web was recently proposed by sev-
eral groups at the W3C Workshop on Rule Languages for Interoperability1 and
presented in the talk “Web for real people” by Tim Berners-Lee2. An older ar-
chitecture, depicted in Figure 1, assumed that the main languages that comprise
the Semantic Web should form a single stack and every new development in that
area should build on top of the previous linguistic layers3. The older layers at
the lower part of the stack are supposed to be upward compatible with the new
developments, and in this way any investment made in the old technology will
be preserved as the Semantic Web technology matures and expands.
1 http://www.w3.org/2004/12/rules-ws/
2 http://www.w3.org/2005/Talks/0511-keynote-tbl/
3 However, SparQL (http://www.w3.org/TR/rdf-sparql-query/) has recently joined

as a language sitting outside of the stack

A. Adi et al. (Eds.): RuleML 2005, LNCS 3791, pp. 17–29, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

18 Michael Kifer et al.

Fig. 1. Old Semantic Web Stack

While a single-stack architecture would hold aesthetic appeal and simplify
interoperability, many workers in the field believe that such architecture is un-
realistic and unsustainable. For one thing, it is presumptuous to assume that
any technology will preserve its advantages forever and to require that any new
development must be compatible with the old. If this were a law in the music
industry (for example) then MP3 players would not be replacing compact disks,
compact discs would have never displaced tapes, and we might still be using
gramophones.

The Semantic Web has had a shorter history than music players, but it al-
ready saw its share of technological difficulties. RDF(S), the first layer in the
Web architecture that was dubbed “semantic” [LS99], was proposed and stan-
dardized without ... a semantics. Years later a group of logicians was seen scram-
bling to define a formal semantics that would be reasonably compatible with the
informal prose that was accompanying the official W3C’s RDF(S) recommen-
dation. The resulting semantics for RDF(S) [Hay04] was certainly formal, but
one might question whether the decision to follow the original informal RDF
semantics (and even syntax) to the letter was justified. The difficulties that this
created for OWL [DS04]—the subsequent and more expressive layer of the Se-
mantic Web—are well-documented in [HPSvH03]. It is well-known, but rarely
mentioned, that OWL-DL is not properly layered on top of RDF(S)4, and that
the single-stack architecture for the budding Semantic Web technology already
has a small crack.

The alternative architecture proposed at the workshop recognizes the diffi-
culties (even at the philosophical level) with the single-stack architecture (hence-
forth called SSA). The key idea is that a more realistic architecture must allow
multiple technological stacks to exist side-by-side, as in Figure 2. Ideally, adja-

4 For instance, there are statements that are valid RDF, but not OWL-DL

A Realistic Architecture for the Semantic Web 19

Fig. 2. New Semantic Web Stack

cent stacks should be interoperable to a high degree, but when this is not possible
a loosely coupled integration will be acceptable in practice.

The new architecture is more realistic not only because, in the long run, a
single stack architecture could saddle us with the Semantic Web equivalent of
a gramophone, but also because it would make us use a gramophone to toast
bread and mow grass. That is, it is a vain hope that a single upward-compatible
language, developed in the Semantic Web’s infancy, will suffice for all the future
semantic chores to be done on the Web. This expectation is certainly not borne
out of the fifty years of experience with programming languages.

To avoid any misinterpretation, it is not our intention to claim that the
existing parts in the current stack of Semantic Web technologies are obsolete.
However, every technology, including language design, eventually becomes obso-
lete, and no technology can address all problems.

We are therefore convinced that the multi-stack architecture (henceforth
called MSA) is timely now because limitations of the currently standardized
technology are already felt on the Semantic Web—especially in the subarea of
rules. The need for rule-based processing on the Semantic Web was envisioned
at the very early stage of the development [Bol96,FDES98,MS98,DBSA98], even
before the very term “Semantic Web” was coined in, and the rule/ontology
combination SHOE was already implemented and used in a web context to rea-
son with annotations of web resources before the rise of XML [HHL03]. Now
that OWL has standardized the base level of ontology specification and RuleML
[BTW01] has provided a standard serialization layer, rules for the Web have be-
come the focus of intense activity. SWRL [HPSB+04], SWSL-Rules [BBB+05],
and WRL [ABdB+05] are some of the languages in this domain that have been
proposed recently.

SWRL is a new technology, which extends OWL-DL and permits the use
of Description Logic with certain kinds of rules. However, Description Logic is

20 Michael Kifer et al.

not a technology that comes to mind when one hears about “rules.” The use of
rules for knowledge representation and intelligent information systems dates back
over thirty years. By now it is a mature technology with decades of theoretical
development and practical and commercial use. The accumulated experience in
this area exceeds the experience gathered with the use of Description Logics and
the field is arguably more mature when it comes to rules5.

What does the SSA vs. MSA discussion have to do with rules? The problem is
that the mature technology for rule-based applications mentioned in the previous
paragraph is based on logic programming [Llo87] and nonmonotonic reasoning
(LPNMR), which is not fully compatible with classical first-order logic (FOL) on
which OWL and SWRL are built. The aforesaid Web rules proposals, WRL and
SWSL-Rules, are based on LPNMR. Few people realize that SQL, arguably the
most important rule-based language, has LPNMR as its foundation. Thus, while
the OWL-based stack is undoubtedly important and SWRL will find its uses,
the vast majority of the rule-based applications cannot be done in principle in
SWRL or cannot be done conveniently and efficiently. This problem gives rise
to the second main stack in the MSA diagram in Figure 2.

In the rest of this paper we briefly sketch the ideas underlying LPNMR and
their motivation. We then describe interoperability frameworks for the rule-based
stack and the OWL-based stack and also address the recent critique of MSA that
appeared in [HPPSH05].

2 The Underpinnings of the Rules Stack

In a recent paper [HPPSH05], a number of arguments were laid out to suggest
that the layers of the rules stack in Figure 2 are not properly extending each
other. In particular, the paper claimed that the DLP layer is not properly ex-
tended by the Datalog layer. Unfortunately, it seems that [HPPSH05] mostly
argues against a strawman that it itself constructed. To address this criticism,
we need to clarify the relationship between the different layers of the rules stack
in Figure 2.

A common feature of all the layers in the rules stack is that logical specifi-
cations are divided in two categories: rule sets and queries. A rule set is a set of
statements—called rules—of the form6

head : − body (1)

The head is an atomic formula7 and the body is a conjunction of literals. A literal
is either an atomic formula or a negation of such a formula. The most common

5 Some say that there are many more OWL descriptions on the Web than there are
rule-based programs, but this argument compares apples and oranges. In which
column do we place online databases and SQL applications?

6 The actual syntax varies. For instance, sometimes rules are written as body => head
7 Typically of the form predicate(arg1 , ..., argN), but can also have other forms, if

extensions of predicate logic, such as HiLog [CKW93] or F-logic [KLW95] are used

A Realistic Architecture for the Semantic Web 21

form of negation used in the rule bodies is default negation (more on this later).
However, extensions that permit weakened forms of classical negation (both in
the rule heads and bodies) have been studied [GL91,Gro99]. Finally, we should
note that all variables in a rule are assumed to be universally quantified outside
of the rule.

Various other syntactic extensions of rules exist, which allow disjunctions
and even explicit quantifiers in the rule body, and conjunctions in the rule head.
However, we will not deal with these extensions here.

A fact is a special kind of a rule where the body part is an empty (hence, true)
conjunction. Often, facts are also considered ground (variable-free), although
sometimes universally quantified variables are allowed as well.

A query is a statement of the form

∃ X (atomicFormula) (2)

where X is a list of all variables in atomicFormula. In general, queries can be
much more general. For instance, instead of atomicFormula, conjunctions of
atomic formulas and of their negation can be allowed. However, such queries
can be reduced to the form (2) by introducing rules with atomicFormula in the
head.

An answer to such a query with respect to a rule set R is a list of values v̄
for the variables in X such that R entails (according to the chosen semantics)
atomicFormula′, denoted8

R |≈ atomicFormula
′ (3)

where atomicFormula′ is obtained from atomicFormula by consistently replac-
ing each variable in X with the corresponding value in v̄.

Thus, in rule-based systems, entailment is limited to inferencing of sets of
facts only (or their negation, if the language includes negation). This is quite
different from first-order logic systems, such as Description Logic and OWL,
where more general formulas can be inferred.

We now examine the layers of the rules stack in more detail. We start with
Description Logic Programs (DLP) [GHVD03] and then clarify their relationship
with the RDF layer below and the more expressive layers above.

Description Logic Programs Layer. The rule-set part of the DLP layer is a
set of all statements in Description Logic that are translatable into Horn rules
[GHVD03]. A Horn rule is a rule of the form (1) where the head and the body
consist of only atomic formulas (no negation of any kind). For Horn rules, the
entailment used in (3) is classical first-order.

The query part of DLP is of the form (2) above. Thus, even though DLP is
a subset of Description Logic, the only entailments that are considered in the
DLP layer are inferences of atomic formulas. (Note that [GHVD03] also defined

8 We use |≈ instead of |= to emphasize that the entailment relation used in rule
languages is typically nonmonotonic and, therefore, non-classical

22 Michael Kifer et al.

DHL—Description Horn Logic—which is like DLP, but arbitrary entailments
are allowed from the rules.)

Since DLP is translated into Horn rules, the entailment in (3) is the classical
entailment in first-order logic and, therefore, the semantics of DLP in the OWL
stack and in the rules stack are the same.

RDF Layer. In the architecture diagrams, DLP (and the rest of OWL) is de-
picted as sitting on top of the RDF layer. This statement requires clarifications.
From the logical point of view, RDF graphs are largely just sets of facts. However,
RDF also includes two additional interesting features. The first feature, reifica-
tion, cannot be modeled in DLP or even in more general description logics. In
that sense, neither DLP nor OWL-DL truly reside on top of RDF. Second, RDF
has so-called blank nodes. RDF graphs that contain blank nodes logically corre-
spond to sets of atomic formulas that include existentially quantified variables.
This is not a problem for description logics in general, but (at a first glance)
seems to be a problem for DLP, since the latter does not allow existential vari-
ables in rule heads (and thus neither in facts).

However, it turns out that extending Horn rules to accommodate existentially
quantified facts is not difficult as long as the queries are still of the form (2) above.
Indeed, if R is a set of Horn rules plus facts, where some facts are existentially
quantified, then the entailment (3) holds (where |≈ should be understood as
classical first-order logic entailment) if and only if R′ |= atomicFormula′, where
R′ is a skolemization of R (i.e., is obtained from R by consistently replacing the
occurrences of existential variables with new constants).

Thus, skolemization appears to be the right way to deal with blank nodes
and with embedding RDF in DLP, and this is how various implementations of
the N3 rules language for RDF [BL04] treat blank nodes, anyway.

Reification can also be added to DLP (and to all the layers above it in the
rules stack) along the lines of [YK03]. Therefore, an extension of DLP can be
said to reside on top of RDF.

Datalog Layer. Datalog [MW88] is a subset of Horn logic that does not use
function symbols. Since DLP is a subset of description logic, it does not use
function symbols either and, therefore, the translation of DLP into rules yields
a subset of Datalog.

Strictly speaking, Datalog cannot be said to reside on top of DLP, since the
latter uses the syntax of description logics, which is different from the syntax of
rules (1). However, Datalog certainly resides on top of the image of DLP under
the translation described in [GHVD03]. Therefore, modulo such a translation,
Datalog can be said to extend DLP. Later on, we will define this notion precisely.

Default Negation. Default negation is an inference rule associated with a nega-
tion operator, not, that derives new information based on the inability to derive
some other information. More precisely, not q may be derived because q cannot
be. This type of negation has been a distinguishing feature of rule-based lan-
guages for more than thirty years. With such an inference rule, given a rule-base
with the single rule p : − not q, we can derive p because not q can be derived
by default (since q is not derivable).

A Realistic Architecture for the Semantic Web 23

One of the main reasons for the emergence of default negation is that it is
impractical, and often impossible, to write down all the negative facts that might
be needed in a knowledge base in order to take advantage of the classical nega-
tion. It is a common practice in knowledge representation to specify only positive
true facts and leave derivation of the negative facts to the default negation rule.
Default negation is also often associated with common sense reasoning used by
humans who tend to conclude non-existence of something because existence is
not positively known.

Default negation is sometimes also referred to as negation as failure. This
terminology is unfortunate, since negation as failure is the traditional name
for a specific form of default negation [Cla78]—one that is used in the Prolog
language. Negation as failure (as used in Prolog) is known to be problematic
[ABW88] and modern logic programming languages use either the well-founded
default negation [GRS91] or the one based on stable models [GL88].

It is well-known that the default negation layer is a semantic and syntactic
extension of the Datalog layer in the sense defined below.

Default negation is not the only nonmonotonic inference rule that we deem
to be important on the rules stack of MSA. A related inference rule, called de-
fault inheritance, is used in object-oriented knowledge representation. F-logic
[KLW95] offers a comprehensive logical framework, which supports default in-
heritance, and this inference rule is implemented in most F-logic based systems,
such as FLORA-2 [YK02,YKZ03,Kif05] and Ontobroker [Ont].

Constraints. Support for database-style constraints is another important feature
of knowledge representation on the rules stack.

Logic languages that are based on pure first-order logic, like OWL, do not
support constraints and have no notion of violation of a constraint. Instead, they
provide restrictions, which are statements about the desired state of the world.
Unlike constraints, restrictions may produce new inferences. For instance, if a
person is said to have at most one spouse and the knowledge base records that
John has two, Mary and Ann, then OWL would conclude that Mary and Ann is
the same person. In contrast, a rulebase with nonmonotonic semantics will view
such a knowledge base as inconsistent.

The semantics of database constraints is closely related to nonmonotonic
reasoning, since it relies on the notion of canonical models—a subset of models
that are considered to be “correct”—and focusing on canonical models is a
standard way of defining the semantics for default negation [Sho87]. In contrast,
pure first-order logic based semantics considers all models of a theory. Therefore,
database constraints belong on the rules stack of MSA.

Additional Layers. The rules stack can be further extended with additional layers
of which the more interesting ones include classical negation, prioritized rules,
object-orientation, and higher-order syntax.

Extensions that permit classical negation alongside default negation have
been proposed in [GL91,Gro99] and were implemented in a number of sys-
tems. Rule prioritization is part of Courteous Logic Programming [Gro99], and

24 Michael Kifer et al.

is supported by the Sweet Rules system9. Object-oriented extensions inspired
by F-logic [KLW95] and HiLog higher-order extensions [CKW93] are part of the
FLORA-2 system [YKZ03]. In fact, SWSL-Rules — a language that incorporates
all of these layers have also been recently proposed [BBB+05].

3 Scoped Inference

In (2), logical entailment happens with respect to an explicitly specified knowl-
edge base, R. The assumption that the underlying knowledge base is known
is a cornerstone of traditional knowledge representation. The Semantic Web
challenges this assumption, since the boundaries of the Web cannot be clearly
delineated. Therefore, the notion of inference on the Semantic Web needs to be
revisited.

One idea that is beginning to take hold is the notion of scoped inference. The
idea is that derivation of any literal, q, must be performed within the scope of
an explicitly specified knowledge base. Different scopes can be used for differ-
ent inferences, but the scope must always be declared. Scoped inference is an
important feature of several knowledge representation systems for the Web. In
FLORA-2 [YKZ03], the entire knowledge base is split into modules and infer-
ence is always made with respect to a particular module. In TRIPLE [SD02],
the same idea goes under the name of a context.

Scoped inference can be realized using the notion of modules, as in FLORA-
2 and TRIPLE, where the definition of a scope can be based on URIs, which
dereference to concrete knowledge bases.

Related to the notion of scoped inference is an extension of the concept of
default negation, called scoped default negation10. The idea is that the default
negation inference rule must also be performed within the scope of an explicitly
specified knowledge base. That is, not q is said to be true with respect to a
knowledge base K if q is not derivable from K. A version of this rule is supported
by some systems, such as FLORA-2, and is discussed in [Kif05].

While scoped inference is clearly useful even for deriving positive information,
scope is imperative for deriving negative information from knowledge published
on the Web. In fact, due to the open nature of the Web, it is not even meaningful
to talk about the inability to derive something from a knowledge base whose
bounds and the exact content are not known. On the other hand, with explicit
scope, default negation becomes not only a meaningful derivation rule on the
Web, but also as useful as in traditional knowledge bases.

4 The Relationship Between Layers

The layers of the rules stack are progressive syntactic and semantic extensions of
each other (modulo the aforesaid caveats pertaining the RDF layer). Formally,
9 http://sweetrules.projects.semwebcentral.org/

10 This concept sometimes goes under the name scoped negation as failure or SNAF,
which is unfortunate terminology for the reasons stated earlier

A Realistic Architecture for the Semantic Web 25

this means that each layer is a syntactic and semantic extension of the previous
layer, as defined next.

Language Extensions. Let L1 ⊆ L2 be two logic languages and suppose their
semantics are defined using the entailment relations |=1 and |=2. L2 is said to be
an extension of L1 if for any pair of formulas φ, ψ ∈ L1, the entailment φ |=1 ψ
holds iff φ |=2 ψ holds.

In case of a rules language, the set of formulas that can be used as premises
is not the same as the formulas that can be used as consequents. Therefore, we
should assume that L1 = Premises1 ∪ Consequents1 and L2 = Premises2 ∪
Consequents2. In addition, as in the case of DLP and Datalog, L1 may not
actually be a subset of L2. Instead, it may be embedded in L2 under a 1-1 trans-
formation, ι. In our notation, this is expressed as ι(Premises1) ⊆ Premises2

and ι(Consequents1) ⊆ Consequents2.
We can now say that L2 extends L1 under the embedding ι if for every pair of

formulas, φ ∈ Premises1 and ψ ∈ Consequents1, the entailment φ |=1 ψ holds
iff ι(φ) |=2 ι(ψ) holds.

With these definitions, we can now formally state (relying on the standard
facts about Datalog and default negation) that Datalog extends DLP with re-
spect to the DLP-to-Datalog embedding described in [GHVD03]. The default
negation layer similarly extends Datalog with respect to the identity embed-
ding.

Interoperability Through Language Extension. With a proper definition of lan-
guage extensions, we can now address a recent criticism of the layered structure
of the rules stack. It is claimed in [HPPSH05] that it is incorrect to say that
Datalog is an extension of the DLP layer because, given a single fact, such
as knows(pat,jo), DLP and Datalog give different answers to the question of
whether pat knows exactly one person.

The answer to this apparent paradox (relatively to our earlier discussion)
is simple: the above question cannot be formulated in either DLP or Datalog!
In the OWL stack, this query requires a more expressive description logic and
on the rules side it requires default negation. Therefore, as stated, the above
argument falls flat on its face. However, a restatement of this argument is worth
debating:

Given a set of RDF facts and two “similar” queries—one expressed in
the rules stack and the other in the OWL stack—does it matter that the
two queries might return different answers?

The word similar is in quotes because it is unclear whether—outside of
Datalog—an acceptable systematic mapping exists to map OWL queries into
rules, or vice versa. For instance, the aforesaid question about pat knowing
exactly one person requires radically different expressions in OWL and in the
default negation layer. Nevertheless, intuitively these two queries can be viewed
as similar. Under the OWL semantics the answer will be “unknown” since it
is not possible to either prove or disprove that pat knows exactly one person;
under the rules semantics the answer will be a “yes.” We argue, however, that

26 Michael Kifer et al.

both answers are right! A user who chooses to write an application using the
rules stack does so because of a desire to use the language and semantics of that
stack. Otherwise, a competent user should choose OWL and SWRL.

5 Interoperability Between Rules and OWL

It has often been observed that DLP, the intersection of Description Logic and
Logic Programming, is rather minimalistic—a good reference point perhaps, but
too small for realistic knowledge representation in the Semantic Web. On the
other hand, the union of various classes of Description Logic and Logic Program-
ming leads to supersets of first-order logic with default negation, which is not
easily formalized model-theoretically and computationally. To achieve a usable
level of interoperability between the two paradigms of knowledge representation,
we need a “logical framework” that will be sitting above the OWL and rules stack
and will enable inferences performed by OWL to be used by the rules stack, and
vice versa.

As discussed in previous sections, OWL-based ontologies and rules are best
viewed as complementary stacks in a hybrid Semantic Web architecture. Our
interoperability framework derives from these observations. When we say “rules”
here, we mean rule bases with nonmonotonic semantics. Pure first-order rules, as
in SWRL, belong to the OWL stack, and we will include them under the rubric
of “OWL-based ontologies.”

The basic idea is that rules and OWL will view each other as “black boxes”
with well-defined interfaces defined through exported predicates. OWL-based on-
tologies will export some of their classes and properties, while rule-based knowl-
edge bases will export some of the predicates that they define. Each type of
the knowledge base will be able to refer to the predicates defined in the other
knowledge bases and treat them extensionally, as collections of facts.

One of the earliest integration frameworks in this spirit was AL-log [DLNS98].
AL-Log is a uni-directional approach where rules can refer to description logic
based ontologies, but not vice versa. This approach is appropriate when OWL-
based ontologies are used to classify objects into classes (analogously to database
schema), and rules supply additional inferences.

Bi-directional integration is more powerful, but the semantics of an integrated
knowledge base may not be clear if rules refer to ontologies and ontologies refer
back to rules within the same knowledge base in a recursive manner. One example
when such a semantics can be defined under certain restrictions was given in
[ELST04]. However, we believe that recursive references across the rules/OWL
boundary are unlikely, and this semantic complication will not arise (and can
probably be disallowed in a practical language).

In sum, the hybrid architecture offers a way to combine expressive classes of
nonmonotonic rulebases with OWL-based ontologies. The two kinds of knowl-
edge bases can use inferences produced by each other or they can be used in a
standalone mode. It is not hard to see that the interoperability framework dis-
cussed in this section can be implemented on top of the infrastructure provided
by modules (or contexts) used in systems like FLORA-2 and TRIPLE, which

A Realistic Architecture for the Semantic Web 27

was introduced in Section 3—the same infrastructure that can be used to solve
the problem of scoped inference.

6 Conclusion

In this paper we provided an in-depth discussion of the multi-stack architecture
(MSA) for the Semantic Web and argued that a stack of rule-based languages,
complete with default negation, should exist side-by-side with the ontology stack
based on OWL. We surveyed the theoretical underpinning of the rules stack and
proposed a framework for interoperability between rules and ontologies. We also
discussed the idea of scoped inference and highlighted its importance in the Web
environment. We observed that both scoped inference and the interoperability
framework can be implemented using the idea of modules.

We would like to further remark that the proposed multi-stack architecture
is extensible and additional stacks can be added to it as long as they can in-
teroperate according to the guidelines of Section 5. One candidate for such an
additional stack is the SparQL language11.

Acknowledgement

Michael Kifer was supported in part by NSF grant CCR-0311512 and by U.S.
Army Medical Research Institute under a subcontract through Brookhaven Na-
tional Lab. Jos de Bruijn was supported by the European Commission under the
projects SEKT and ASG. Harold Boley was supported in part by the Natural
Sciences and Engineering Research Council of Canada (NSERC). Dieter Fensel
was supported in part by the Science Foundation Ireland (SFI).

References

[ABdB+05] Jürgen Angele, Harold Boley, Jos de Bruijn, Dieter Fensel, Pascal Hitzler,
Michael Kifer, Reto Krummenacher, Holger Lausen, Axel Polleres, and
Rudi Studer. Web rule language (wrl), Juny 2005. Technical Report.

[ABW88] K. R. Apt, H. A. Blair, and A. Walker. Foundations of Deductive
Databases and Logic Programming, chapter Towards a theory of declara-
tive knowledge, pages 89–148. Morgan Kaufmann Publishers, Los Altos,
CA, 1988.

[BBB+05] S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Gruninger, R. Hull,
M. Kifer, D. Martin, S. McIlraith, D. McGuinness, J. Su, and S. Tabet.
Swsl-rules: A rule language for the semantic web, July 2005. Technical
Report.

[BL04] T. Berners-Lee. Primer: Getting into RDF & Semantic Web using N3,
2004. http://www.w3.org/2000/10/swap/Primer.html.

11 http://www.w3.org/TR/rdf-sparql-query/

28 Michael Kifer et al.

[Bol96] Harold Boley. Knowledge Bases in the World Wide Web: A Challenge
for Logic Programming. In Paul Tarau, Andrew Davison, Koen De
Bosschere, and Manuel Hermenegildo, editors, Proc. JICSLP’96 Post-
Conference Workshop on Logic Programming Tools for INTERNET Ap-
plications, pages 139–147. COMPULOG-NET, Bonn, Sept. 1996. Revised
versions in: International Workshop “Intelligent Information Integration”,
KI-97, Freiburg, Sept. 1997; DFKI Technical Memo TM-96-02, Oct. 1997.

[BTW01] Harold Boley, Said Tabet, and Gerd Wagner. Design Rationale of RuleML:
A Markup Language for Semantic Web Rules. In Proc. Semantic Web
Working Symposium (SWWS’01), pages 381–401. Stanford University,
July/August 2001.

[CKW93] W. Chen, M. Kifer, and D.S. Warren. HiLog: A foundation for higher-
order logic programming. 15(3):187–230, February 1993.

[Cla78] K. L. Clark. Logic and Data Bases, chapter Negation as Failure, pages
293–322. Plenum Press, NY, USA, 1978.

[DBSA98] Stefan Decker, Dan Brickley, Janne Saarela, and Jürgen Angele. A query
and inference service for RDF. In QL’98 - The Query Languages Work-
shop, W3C Workshop, 1998.

[DLNS98] F.M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrating
datalog and description logics. Journal of Intelligent Information Systems,
10(3):227–252, 1998.

[DS04] Mike Dean and Guus Schreiber, editors. OWL Web Ontology Language
Reference. 2004. W3C Recommendation 10 February 2004.

[ELST04] Thomas Eiter, Thomas Lukasiewicz, Roman Schindlauer, and Hans Tom-
pits. Combining answer set programming with description logics for the
semantic web. In Proc. of the International Conference of Knowledge
Representation and Reasoning (KR’04), 2004.

[FDES98] Dieter Fensel, Stefan Decker, Michael Erdmann, and Rudi Studer. On-
tobroker: The very high idea. In Proceedings of the 11th Interna-
tional FLAIRS Conference (FLAIRS-98), pages 131–135, Sanibel Island,
Florida, USA, 1998.

[GHVD03] B.N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic pro-
grams: Combining logic programs with description logic. In 12th Interna-
tional Conference on the World Wide Web (WWW-2003), May 2003.

[GL88] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for
logic programming. In Robert A. Kowalski and Kenneth Bowen, editors,
Proceedings of the Fifth International Conference on Logic Programming,
pages 1070–1080, Cambridge, Massachusetts, 1988. The MIT Press.

[GL91] M. Gelfond and V. Lifschitz. Classical negation in logic programs and
disjunctive databases. New Generation Computing, 9(3/4):365–386, 1991.

[Gro99] B.N. Grosof. A courteous compiler from generalized courteous logic pro-
grams to ordinary logic programs. Technical Report RC 21472, IBM, July
1999.

[GRS91] Allen Van Gelder, Kenneth Ross, and John S. Schlipf. The well-founded
semantics for general logic programs. Journal of the ACM, 38(3):620–650,
1991.

[Hay04] Patrick Hayes. RDF semantics. Technical report, W3C, 2004. W3C
Recommendation 10 February 2004. http://www.w3.org/TR/rdf-mt/.

[HHL03] J. Heflin, J. Hendler, and S Luke. SHOE: A Blueprint for the Semantic
Web. MIT Press, Cambridge, MA, 2003.

A Realistic Architecture for the Semantic Web 29

[HPPSH05] Ian Horrocks, Bijan Parsia, Peter Patel-Schneider, and James Hendler.
Semantic web architecture: Stack or two towers? In Third Workshop on
Principles and Practice of Semantic Web Reasoning, Dagstuhl, Germany,
September 2005.

[HPSB+04] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Ben-
jamin Grosof, and Mike Dean. SWRL: A semantic web rule language
combining OWL and RuleML. Member submission 21 may 2004, W3C,
2004. Available from http://www.w3.org/Submission/SWRL//.

[HPSvH03] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From
SHIQ and RDF to OWL: The making of a web ontology language. Journal
of Web Semantics, 1(1):7–26, 2003.

[Kif05] M. Kifer. Nonmonotonic reasoning in FLORA-2. In 2005 Intl. Confer-
ence on Logic Programming and Nonmonotonic Reasoning (LPNMR’05),
Diamante, Italy, September 2005.

[KLW95] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented
and frame-based languages. Journal of the ACM, 42:741–843, July 1995.

[Llo87] John W. Lloyd. Foundations of Logic Programming. Springer-Verlag,
Berlin, Heidelberg, New York, 1987.

[LS99] Ora Lassila and Ralph R. Swick. Resource Description Framework
(RDF) Model and Syntax Specification. Recommendation REC-rdf-
syntax-19990222, W3C, February 1999.

[MS98] Massimo Marchiori and Janne Saarela. Query + metadata + logic =
metalog. In QL’98 - The Query Languages Workshop, W3C Workshop,
1998.

[MW88] D. Maier and D.S. Warren. Computing with Logic: Logic Programming
with Prolog. Benjamin-Cummings, Menlo Park, CA, 1988.

[Ont] Ontoprise, GmbH. Ontobroker. http://www.ontoprise.com/.
[SD02] Michael Sintek and Stefan Decker. TRIPLE – A Query, Inference, and

Transformation Language for the Semantic Web. In 1st International
Semantic Web Conference (ISWC2002). Sardinia, Italy, June 2002.

[Sho87] Y. Shoham. Nonmonotonic logics: meaning and utility. In Proc. 10th
International Joint Conference on Artificial Intelligence, pages 388–393.
Morgan Kaufmann, 1987.

[YK02] G. Yang and M. Kifer. Well-founded optimism: Inheritance in frame-based
knowledge bases. In Intl. Conference on Ontologies, DataBases, and Ap-
plications of Semantics for Large Scale Information Systems (ODBASE),
October 2002.

[YK03] Guizhen Yang and Michael Kifer. Reasoning about Anonymous Resources
and Meta Statements on the Semantic Web. In Stefano Spaccapietra, Sal-
vatore T. March, and Karl Aberer, editors, J. Data Semantics I, volume
2800 of Lecture Notes in Computer Science, pages 69–97. Springer, 2003.

[YKZ03] G. Yang, M. Kifer, and C. Zhao. FLORA-2: A rule-based knowledge
representation and inference infrastructure for the Semantic Web. In
International Conference on Ontologies, Databases and Applications of
Semantics (ODBASE-2003), November 2003. The system is available at
http://flora.sourceforge.net.

Active Rules in the Semantic Web:
Dealing with Language Heterogeneity

Wolfgang May1, José Júlio Alferes2, and Ricardo Amador2

1 Institut für Informatik, Universität Göttingen
may@informatik.uni-goettingen.de

2 Centro de Inteligência Artificial – CENTRIA, Universidade Nova de Lisboa
{jja,ra}@di.fct.unl.pt

Abstract. In the same way as the “static” Semantic Web deals with
data model and language heterogeneity and semantics that lead to RDF
and OWL, there is language heterogeneity and the need for a semanti-
cal account concerning Web dynamics. Thus, generic rule markup has
to bridge these discrepancies, i.e., allow for composition of component
languages, retaining their distinguished semantics and making them ac-
cessible e.g. for reasoning about rules.
In this paper we analyze the basic concepts for a general language for
evolution and reactivity in the Semantic Web. We propose an ontology
based on the paradigm of Event-Condition-Action (ECA) rules including
an XML markup. In this framework, different languages for events (in-
cluding languages for composite events), conditions (queries and tests)
and actions (including complex actions) can be composed to define high-
level rules for describing behavior in the Semantic Web.

1 Introduction

The goal of the Semantic Web is to bridge the heterogeneity of data formats,
schemas, languages, and ontologies used in the Web to provide semantics-enabled
unified view(s) on the Web, as an extension to today’s portals. In this scenario,
XML (as a format for storing and exchanging data), RDF (as an abstract data
model for states), OWL (as an additional framework for state theories), and
XML-based communication (Web Services, SOAP, WSDL) provide the natural
underlying concepts. The Semantic Web should not only be able to support
querying, but also to propagate knowledge and changes in a semantic way. This
evolution and behavior depends on the cooperation of nodes. Here, also the het-
erogeneity of concepts for expressing behavior requires an appropriate handling
on the semantic level. Since the contributing nodes are based on different con-
cepts such as data models and languages, it is important that frameworks for
the Semantic Web are modular, and that the concepts and the actual languages
are independent. While for a data model and for querying, a “common” agreed
standard evolves with RDF/RDFS, OWL and languages like RDF-QL etc., the
concepts for describing and implementing behavior are much more different, due
to different needs, and it is –in our opinion– unlikely that there will be a unique
language for this throughout the Web.

A. Adi et al. (Eds.): RuleML 2005, LNCS 3791, pp. 30–44, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Active Rules in the Semantic Web: Dealing with Language Heterogeneity 31

Here, reactivity and its formalization as Event-Condition-Action (ECA) rules
offer a suitable common model because they provide a modularization into clean
concepts with a well-defined information flow. An important advantage of them
is that the content of a rule (event, condition, and action specifications) is sep-
arated from the generic semantics of the ECA rules themselves that provides
a well-understood formal meaning: when an event (atomic event or compos-
ite event) occurs, evaluate a condition (possibly after querying for some extra
data), and if the condition is satisfied then execute an action (or a sequence of
actions, a program, a transaction). ECA rules provide a generic uniform frame-
work for specifying and implementing communication, local evolution, policies
and strategies, and –altogether– global evolution in the Semantic Web.

In the present paper, we describe an ontology-based approach for specifying
(reactive) behavior in the Web and evolution of the Web that follows the ECA
paradigm. We propose a modular framework for composing languages for events,
queries, conditions, and actions by separating the ECA semantics from the un-
derlying semantics of events, queries, and actions. This modularity allows for
high flexibility wrt. these sublanguages, while exploiting and supporting their
meta-level homogeneity on the way to the Semantic Web.

Moreover, the ECA rules do not only operate on the Semantic Web, but are
themselves also part of it. In general, especially if one wants to reason about
evolution, ECA rules (and their components) must be communicated between
different nodes, and may themselves be subject to being updated. For that, the
ECA rules themselves must be represented as data in the (Semantic) Web. This
need calls for an ontology and a (XML) Markup Language of ECA Rules. A
markup proposal for active rules can be found already in RuleML [RML], but
it does not tackle the complexity and language heterogeneity of events, actions,
and the generality of rules, as described here.

Related Work – Concepts that Have to Be Covered and Integrated by
this Approach. The importance of being able to update the Web has long been
acknowledged, and several language proposals exist (e.g. XUpdate [XML00] and
an extension to XQuery in [TIHW01]) for just that. More recently some reactive
languages have been proposed that are also capable of dealing-with/reacting-to
some forms of events, evaluate conditions, and upon that act by updating data.
These are e.g. XML active rules in [BCP01,BBCC02], an ECA language for XML
[BPW02], and RDFTL [PPW04], which is an ECA language on RDF data. These
languages do not provide for more complex events, and they do not deal with
heterogeneity at the level of the language. Relating to our approach, these rules
will be used on a low abstraction level, dealing with data level events and actions.
Active XML [ABM+] embeds service call elements into XML documents that
are executed when the element is accessed. The recent work on the language
XChange [BP05] already aims at specifying more complex events and actions;
nevertheless, it still presents a monolithic language for ECA rules in the Web,
not dealing with the issue of language heterogeneity.

Structure of the Paper. In the next section, we analyse the abstraction levels
of behavior (and ECA rules) in the Semantic Web. The modular structuring of

32 Wolfgang May, José Júlio Alferes, and Ricardo Amador

our approach into different language families is presented in Section 3. Section 4
then analyzes the common structure and requirements for the languages for each
of the parts in an ECA rule, i.e. languages for events, for querying static data
and testing conditions, and for actions. Section 5 describes the global semantics
of the rules, focussing on the handling of variables for communication between
the rule components. Section 6 concludes the paper.

2 Behavior: Abstraction Levels

As described above, the Semantic Web can be seen as a network of autonomous
(and autonomously evolving) nodes. Each node holds a local state consisting of
extensional data (facts), metadata (schema, ontology information), optionally a
knowledge base (intensional data), and, again optional, a behavior base. In our
case, the latter is given by the ECA rules under discussion that specify which
actions are to be taken upon which events under which conditions.

In the same way as the “Semantic Web Tower” distinguishes between the data
level and the semantic (RDF/OWL) level, behavior can be distinguished wrt.
different levels. There is local behavior of Web nodes, partially even “hidden”
inside the database, local rules on the logical level, and Business Rules on the
application level. The cooperation in the Semantic Web by global Business Rules
is then based on local behavior. The proposed comprehensive framework for
active rules in the Web integrates all these levels.

Physical Level: Database Triggers. The base level is provided by rules on
the programming language and data structure level that react directly on changes
of the underlying data. Usually they are implemented inside the database as
triggers, e.g., in SQL, of the form ON database-update WHEN condition BEGIN
pl/sql-fragment END. In the Semantic Web, the data model level is assumed to
be in XML (or RDF, see below) format. While the SQL triggers in relational
databases are only able to react on changes of a given tuple or an attribute of
a tuple, the XML and RDF models call for more expressive event specifications
according to the (tree or graph) structure. Work on triggers for XML data or the
XQuery language has e.g. been described in [BBCC02,BPW02,PPW03,MAA05].

Logical Level: RDF Triggers. Triggers for RDF data have been described in
[PPW04,MAA05]. Triggering events on the RDF level should usually bind vari-
ables Subject, Property, Object, Class, Resource, referring to the modified items (as
URIs), respectively in the same form as SQL’s OLD and NEW values. In case that
data is stored in an RDF database, these triggers can directly be implemented
on the physical, storage level. RDF trigger events already use the terminology of
the application ontology but are still based on the RDF structures of the logical
level. Application-level events can be raised by such rules, e.g.,

ON INSERT OF has professor OF department
% (comes with parameters $subject=dept, $property=has professor,
% and $object=prof)

RAISE EVENT (professor hired($object, $subject))

Active Rules in the Semantic Web: Dealing with Language Heterogeneity 33

which is then actually an event professor hired(prof, dept) of the application on-
tology on which business rules can react.

On the physical and logical levels, actions and events in general coincide, and
consist of updates to data items.

Semantic Level: Active Rules. In rules on the semantic level, the events,
conditions and actions refer to the ontology level:

ON professor hired($prof, $dept)
LET $books := select relevant textbooks for subjects taught by $prof
IF enough money available
DO order(bookstore,$books)

Here, there is an important difference between actions and events : an event
is a visible, possibly indirect or derived, consequence of an action. E.g., the
action is to “debit 200E from Alice’s bank account”, and visible events are “a
change of Alice’s bank account” (that is immediately detectable from the update
operation), or “the balance of Alice’s bank account becomes below zero” (which
has to be derived from an update).

More complex rules also use composite events and queries against the Web.
Composite events in general consist of subevents at that are originally located
at several different locations.

3 Language Heterogeneity and Structure:
Rules, Rule Components and Languages

An ECA concept for supporting interoperability in the Semantic Web needs to
be flexible and adapted to the “global” environment. Since the Semantic Web
is a world-wide living organism, nodes “speaking different languages” should be
able to interoperate. So, different “local” languages, be it the condition (query)
languages, the action languages or the event languages/event algebras have to
be integrated in a common framework. There is a more succinct separation
between event, condition, and action part, which are possibly (i) given in separate
languages, and (ii) possibly evaluated/executed in different places. For this, an
(extendible) ontology for rules, events, and actions that allows for interoperability
is needed, that can be combined with an infrastructure that turns the instances
of these concepts into objects of the Semantic Web itself.

In the present paper, we will focus on the language and markup issues; a
corresponding service-oriented architecture is discussed in [MAA05].

3.1 Components of Active Rules in the Semantic Web

A basic form of active rules is that of the well-known database triggers, e.g., in
SQL, of the form ON database-update WHEN condition BEGIN pl/sql-fragment
END. In SQL, the condition can only use very restricted information about the
immediate database update. In case that an action should only be executed un-
der certain conditions which involve a (local) database query, this is done in a

34 Wolfgang May, José Júlio Alferes, and Ricardo Amador

procedural way in the pl/sql-fragment. This has the drawback of not being declar-
ative; reasoning about the actual effects would require to analyze the program
code of the pl/sql-fragment. Additionally, in the distributed environment of the
Web, the query is probably (i) not local, and (ii) heterogeneous in the language
– queries against different nodes may be expressed in different languages. For
our framework, we prefer a declarative approach with a clean, declarative design
as a “Normal Form”: Detecting just the dynamic part of a situation (event),
then check if something has to be done by first obtaining additional information
by a query and then evaluating a boolean test, and, if “yes”, then actually do
something – as shown in Figure 1.

Fig. 1. Components and Phases of Evaluating an ECA Rule

With this further separation of tasks, we obtain the following structure:

– every rule uses an event language, one or more query languages, a test lan-
guage, and an action language for the respective components,

– each of these languages and their constructs are described by metadata and
an ontology of its semantics, and their nature as a language, e.g., associating
them with a processor,

– there is a well-defined interface for communication between the E, Q&T,
and A components by variables.

Sublanguages and Interoperability. For expressing and applying such rules
in the Semantic Web, a uniform handling of the event, querying, testing, and
action sublanguages is required. Rules and their components are objects of the
Semantic Web, i.e., subject to a generic rule ontology as shown in the UML
model in Figure 2. The ontology part then splits in a structural and application-
oriented part, and an infrastructure part about the language itself. In this paper,
we restrict ourselves to the issues of the ECA language structure and the markup
itself. From the infrastructure part, we here only need to know that each language
is identified by a URI with which information about the specific language (e.g,
an XML Schema, an ontology of its constructs, a URL where an interpreter is
available) is associated; details about a service-oriented architecture proposal
that makes use of this information can be found in [MAA05].

3.2 Markup Proposal: ECA-ML

According to the above-mentioned structure of the rules, we propose the fol-
lowing XML markup. The connection with the language-oriented resources is
provided via the namespace URIs:

Active Rules in the Semantic Web: Dealing with Language Heterogeneity 35

Fig. 2. ECA Rule Components and corresponding Languages II

<!ELEMENT rule (event, query*, test?, action+)>

<eca:rule declaration of namespaces e.g. xmlns:evlg=“http://my.event-language.org” >

rule-specific contents
<eca:event> event specification as <evlg:sequence> ... </evlg:sequence> </eca:event>

<eca:query> query specification </eca:query>

<eca:test> test specification </eca:test>

<eca:action> action specification </eca:action>

<!– event, condition, and action specification use markup elements
of their sublanguage’s namespaces; see below –>

</eca:rule>

A similar markup for ECA rules has been used in [BCP01] with fixed languages
(using a basic language for atomic events on XML data, XQuery as condition
language and SOAP in the action part). This fixed approach falls short wrt. the
language heterogeneity, and especially the use and integration of languages for
composite events. In the same way, the XChange approach [BP05] uses a fixed
language for specifying the event, condition, and action part. In contrast, the
approach proposed here allows for using arbitrary languages. Thus, these other
proposals are just two possible configurations. Our approach even allows to mix
components of both these proposals.

Triggers as Rules. The above mentioned database triggers, where a rule is
given in an internal syntax, are just wrapped as opaque rules. In such a case, the
eca:rule element contains only an eca:opaque element with text contents (program
code of some rule language) and attributes lang (text) and ref (URI where an
interpreter is found, similar to the namespace); a similar mechanism to XML’s
NOTATION can also be applied.

36 Wolfgang May, José Júlio Alferes, and Ricardo Amador

<eca:rule>

<eca:opaque name=“SQL trigger” ref= “uri of the trigger language”>

ON database-update WHEN condition BEGIN action END
</eca:opaque>

</eca:rule>

Since opaque rules are ontologically “atomic” objects, their event, condition,
and action parts cannot be accessed by Semantic Web concepts. Note that there
are canonic mappings between such triggers and their components and the gen-
eral ECA ontology, where then the components still end up as opaque native
code segments (see e.g. the analysis of the components structure in Section 4;
especially Fig. 5).

3.3 Hierarchical Structure of Languages

The framework defines a hierarchical structure of language families (wrt. embed-
ding of language expressions) as shown in Figure 3: As described until now, there
is an ECA language, and there are (heterogeneous) event, query, test, and action
languages. Rules will combine one or more languages of each of the families. In
general, each such language consists of an own, application-independent, syn-
tax and semantics (e.g., event algebras, query languages, boolean tests, process
algebras or programming languages) that is then applied to a domain (e.g. trav-
elling, banking, universities, etc.). The domain ontologies define the static and
dynamic notions of the application domain, i.e., predicates or literals (for queries
and conditions), and events and actions (e.g. events of train schedule changes,
actions of reserving tickets, etc.). Additionally, there are domain-independent
languages that provide primitives (with arguments), like general communication,
e.g. received message(M) (where M in turn contains domain-specific content), or
transactional languages with an action commit(A) and an event committed(A)
where A is a domain-specific action.

In the next section, we discuss common aspects of the languages on the
“middle” level (that immediately lead to the tree-style markup of the respective
components, thus yielding a straightforward XML markup). Section 5 then deals
with the interplay between the rule components.

4 Common Structure of Component Languages

The four types of rule components use specialized types of languages that, al-
though dealing with different notions, share the same algebraic language struc-
ture:

– event languages: every expression gives a description of a (possibly compos-
ite) event. Expressions are built by composers of an event algebra, where the
leaves are atomic events of the underlying application;

– query languages: expressions of an algebraic query-language;

Active Rules in the Semantic Web: Dealing with Language Heterogeneity 37

Fig. 3. Hierarchy of Languages

– test languages: they are in fact formulas of some logic over literals (of that
logic) and an underlying domain (that determines the predicate and function
symbols, or class symbols etc., depending on the logic);

– action languages: every expression describes an (possible composite) activity.
Here, algebraic languages (like process algebras) or “classical” programming
languages (that nevertheless consist of expressions) can be used. Again, the
atomic items are actions of the application domain.

Algebraic Languages. As shown in Figure 4, all component languages consist
of an algebraic language defining a set of composers, and embedding atomic ele-
ments (events, literals, actions) that are contributed by domain languages, either
for specific applications or application-independent (e.g., messaging). Expres-
sions of the language are then (i) atomic elements, or (ii) composite expressions
recursively obtained by applying composers to expressions. Due to their struc-
ture, these languages are called algebraic languages, e.g. used in event algebras,
algebraic query languages, and process algebras. Each composer has a given car-
dinality that denotes the number of expressions (of the same type of language,
e.g., events) it can compose, and (optionally) a sequence of parameters (that
come from another ontology, e.g., time intervals) that determines its arity (see
Figures 4 and 5). For instance, “E1 followed by E2 within t” is a binary com-
poser to recognize the occurrence of two events (atomic or not) in a particular
order within a time interval, where t is a parameter.

Thus, language expressions are in fact trees which are marked up accordingly.
The markup elements are provided by the definition of the individual languages,
“residing” in, and distinguished by, the appropriate namespaces: the expression
“structure” inside each component is built from elements of the algebraic lan-

38 Wolfgang May, José Júlio Alferes, and Ricardo Amador

Fig. 4. Notions of an Algebraic Language

Fig. 5. Syntactical Structure of Expressions of an Algebraic Language

guage. An expression is either an atomic one (atomic event, literal, action) that
belongs to a domain language, or an opaque one that is a code fragment of some
event/query/logic/action language, or a composite expression that consists of a
composer (that belongs to a language) and several subexpressions (where each
recursively also belongs to a language). The leaves of the expression trees are
the atomic events, literals, or actions, contributed by the application domains
(and residing in the domain’s ontology and namespace); they may again have an
internal structure in the domain’s namespace.

Note that it is also possible to nest composers and expressions from different
languages of the same kind (e.g., an event sequence where the first part is de-
scribed in event algebra A and the second in another algebra B), distinguishing
them by the namespaces they use. Thus, languages are not only associated once
on the rule component level, but this can also be done on the expression level.

Active Rules in the Semantic Web: Dealing with Language Heterogeneity 39

5 Semantics of Rule Execution

For classical deductive rules, there is a bottom-up evaluation where the body
is evaluated and produces a set of tuples of variable bindings. Then, the rule
head is “executed” by iterating over all bindings, for each binding instantiating
the structure described in the head (in some languages also executing actions
in the head). The semantics of ECA rules should be as close as possible to this
semantics, adapted to the temporal aspect of an event:

ON event AND additional knowledge, IF condition then DO something.

To support communication between heterogeneous languages at the rule com-
ponent level, there must be a precise convention between all these languages on
how the different components of a rule can exchange information and interact
with each other. In the following, we state some requirements on the contribut-
ing sublanguages and provide technical means to integrate these languages with
our framework.

5.1 Logical Variables

We propose to use logical variables in the same way as in Logic Programming.
For each instance of a rule, a variable must bound only once. In case that a
variable occurs more than once, it acts then as a join variable. While in LP
rules, variables must be bound by a positive literal in the body to serve as join
variables in the body and to be used in the head, in ECA rules we have four
components: A variable must be bound in the rule, in an “earlier” (E<Q<T<A)
or at least the same component as where it is used. Usage can be as a join
variable in case of the E, Q, or T component, or to execute (“derive”) an action
in the action component (that in ECA corresponds to the rule head). This leads
to a definition of safety of ECA rules that is similar to that of LP rules. Variables
can be bound to several things: values/literals, references (URIs), XML or RDF
fragments, or events (marked up as XML or RDF fragments). Expressions can
also use local variables, e.g., in first-order logic conditions scoped by a quantifier.

Variable Handling on the Rule Level. As in Logic Programming, the se-
mantics of rules is based on sets of tuples of (answer) variable bindings. We
propose to use a simple tuple-based representation for interchange of bindings:

<variable-bindings>

<tuple>

<variable name=”name” ref=”rdf-uri”/>

<variable name=”name”> contents </variable>

:
</tuple>

</variable-bindings>

Variable Handling in E, Q, T, and A Sublanguages. While the semantics
of the ECA rules provides the infrastructure for these variables, the markup of
specific languages must provide the actual handling of variables in its expressions.
Currently languages mainly use variables in two ways:

40 Wolfgang May, José Júlio Alferes, and Ricardo Amador

– Languages that bind variables by matching free variables (e.g. query lan-
guages like Datalog, F-Logic [KL89], XPathLog [May04]). Here, the matches
can be literals (Datalog) or literals and structures (e.g., in F-Logic,
XPathLog, Xcerpt [BS02]). Similar techniques can also be applied to de-
sign languages for the event component.

– Functional-style languages: the sublanguages for the query and event compo-
nents can be designed as functions over a database or an event stream. In the
XML world, such languages return a (nameless) data fragment (e.g. XQuery;
also the expressions of the above-mentioned F-Logic, XPathLog and Xcerpt
can be used in this way). For event languages, the “result” of an expression
can be considered the sequence of detected events that “matched” the event
expression in an event stream (e.g., as in XChange [BP05]).

Variables: Syntax. We propose constructs for handling variables borrowed
from XSLT: use variables by {$var-name} and by <variable name=“...”> elements:

– <eca:variable name=“name”>content</eca:variable>

where content can be any expression whose value is bound to the variable
(i.e., an event specification or a query).

– <eca:variable name=“name” select=“ql-expr”/>

Such expressions can be used for navigational access/comparison of values,
or for defining a new variable based on already bound ones in expr, and are
to be understood as a shorthand for

<eca:variable name=“name”>

<eca:query xmlns:ql=“ql-url”>

<eca:opaque> expr </eca:opaque>

</eca:query>

</eca:variable>

where ql is a (simple!) query language, e.g. XPath.

Both constructs can be used on the rule level (e.g., for binding the result of the
event component; see later example), and we recommend also to consider them
when designing component languages.

5.2 Firing ECA Rules: The Event Component

Formally, detection of an event results in an occurrence indication, together with
information that has been collected. An ECA rule is fired for each successful
detection of the specified event, and initial variable bindings are produced by
the event component. The event component consists, as shown above, of an
event algebra term whose leaves are atomic events. The pattern is “matched”
against the stream of detected events. Inside of <eca:atomic-event> elements, the
domain namespaces are used for specifying event patterns to be matched. In the
event component, variables can be bound as described above pattern-based with
<eca:variable name= “var-name”> ... </eca:variable> , or navigation-based: inside
the atomic event itself (as an XML fragment) is available as $event. Then,

Active Rules in the Semantic Web: Dealing with Language Heterogeneity 41

<eca:variable name= “var-name” select= “$event/path...”/>

can be used to match and access data within the event.
In many approaches (including the SNOOP event algebra [CKAK94]), the

“result” of event detection is the sequence of the events that “materialized”
the event pattern to be detected. In this case, an appropriate way is to bind
this result to a variable (in the present case, using the XML representations
of the events). Further variable bindings can then be extracted by subsequent
<eca:query> or <eca:variable> elements.

Example 1. Consider the following scenario: “when registration for an exam of
subject S is opened, students X register, and registration for S closes, then ...
do something”. This cumulative event can be specified in SNOOP as

A∗(reg open(Subj), register(Subj, Stud), reg close(Subj)) .

The incoming domain-level events are e.g. of the form

<uni:register subject=“Databases” name=“John Doe”/>.

The following markup of the event component binds the complete sequence to
regseq and the subject to Subj (note that Subj is used as a join variable):

<eca:rule ... >

<eca:variable name=“regseq”>

<eca:event xmlns:xmlsnoop=“http://xmlsnoop.nop”>

<xmlsnoop:cumulative>

<xmlsnoop:atomic>

<uni:reg open>

<xmlsnoop:variable name=“Subj” select=“$event/@Subject” />

</uni:reg open>

</xmlsnoop:atomic>

<xmlsnoop:atomic> <uni:register subject=“$Subj”/> </xmlsnoop:atomic>

<xmlsnoop:atomic> <uni:reg close subject=“$Subj”/> </xmlsnoop:atomic>

</xmlsnoop:cumulative>

</eca:event>

</eca:variable>

:
</eca:rule>

Note the namespaces: eca for the rule level, xmlsnoop for the event algebra level
(which also supports the variables) and uni for the domain level.

The event component collects the relevant events, and returns them as a
sequence, e.g. resulting in the following variable bindings:

<variable-bindings>

<tuple>

<variable name=“regseq”>

<reg open subject=“Databases”/>

<register subject=“Databases” name=“John Doe”/>

42 Wolfgang May, José Júlio Alferes, and Ricardo Amador

<register subject=“Databases” name=“Scott Tiger”/>

:
<reg close subject=“Databases”/>

</variable>

<variable name=“Subj”>Databases</variable>

</tuple>

</variable-bindings>

5.3 The Query Component

The query component is concerned with static information that is obtained and
restructured from analyzing the data that has been collected by the event com-
ponent (in the variable bindings) and, based on this data, stating queries against
databases and the Web. Whereas the firing of the rule due to a successful de-
tection of an event results in exactly one tuple of variable bindings, the query
component is very similar to the evaluation of database queries and rule bodies
in Logic Programming: in general, it results in a set of tuples of variable bind-
ings. We follow again the Logic Programming specification that every answer
produces a variable binding. For variable binding by matching (as in Datalog,
F-Logic, XPathLog, Xcerpt etc.), this is obvious. Since we also allow variable
bindings in the functional XSLT style, the semantics is adapted accordingly:

– each answer node of an XPath expression yields a variable binding;
– each node that is returned by an XQuery query yields a variable binding; if

the XQuery query is of the form
<name>{ for ... where ... return ...} </name> ,
then the whole result yields a single variable binding.

Example 2. Consider again Example 1 where the resulting event contained sev-
eral registrations of students. The names of the students can be extracted as
multiple string-valued variables:

<eca:rule ... >

... same as above, binding variables “Subj” and “regseq” ...
<eca:variable name=“Student”>

<eca:query>

<eca:opaque lang=’xpath’>

$regseq//register[@subject=$Subj]/@name/string()
</eca:opaque>

</eca:query>

</eca:variable>

:
</eca:rule>

The above query generates the extended variable bindings
β1 = {Subj → ’Databases’, regseq → (as above), Student → ’John Doe’},
β2 = {Subj → ’Databases’, regseq → (as above), Student → ’Scott Tiger’}.

Active Rules in the Semantic Web: Dealing with Language Heterogeneity 43

5.4 The Test Component

In general, the evaluation of conditions is based on a logic over literals with
boolean combinators and quantifiers. A Markup Language exists with FOL-
RuleML [BDG+]. Instead of first-order atoms, also “atoms” of other data mod-
els can be used. Note that XPath expressions are also literals that result in a
true/false (true if the result set is non-empty) value. The result of the test com-
ponent is the set of tuples of variable bindings that satisfy the condition (for
further propagation to the action part).

5.5 The Action Component

The action component is the one where actually something is done in the ECA
rule: for each tuple of variable bindings, the action component is executed. The
action component may consist of several <eca:action> elements which contain ac-
tion specifications, possibly in different action languages, e.g., the CCS process
algebra [Mil83]. This can be updates on the database level, explicit message send-
ing (e.g. to Web Service calls), or actions on the ontology level (that must then
be implemented appropriately). The semantics is that all actions are executed.

6 Conclusion

We described the concepts and proposed an XML markup for a general ECA-
rule framework for the Semantic Web, taking into account the heterogeneity of
(existing) languages. By using the namespace/URI mechanism for identifying
the languages, also appropriate services can be located. Such an architecture
based on this framework is described in [MAA05]. Rules can e.g. be used both
for defining rule-based Web Services and for combining the functionality of Web
Services (that provide events and execute actions) by rules.

Although the above examples all used “syntactical” languages in XML term
markup for the components, also languages using a semantical, e.g., OWL-based
representation (which have to be developed) can be used if they support the
variable-based communication mechanisms described in Section 5.

There are several issues that are explicitly not dealt with in our approach –
because they are encapsulated inside (and “bought with”) the concepts to be in-
tegrated: The detection of complex events is done and provided by the individual
event languages and their engines – the framework provides an environment for
embedding them. In the same way, query evaluation itself is left to the original
languages and processors to be embedded into the global approach; also actual
execution of actions (and transactions) is left with the individual solutions.

Acknowledgements

This research has been funded by the European Commission within the 6th Fra-
mework Programme project REWERSE, no. 506779.

44 Wolfgang May, José Júlio Alferes, and Ricardo Amador

References

[ABM+] S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, and R. Weber. Active
XML: Peer-to-Peer Data and Web Services Integration. In VLDB, 2002.

[BBCC02] A. Bonifati, D. Braga, A. Campi, and S. Ceri. Active XQuery. In Intl.
Conference on Data Engineering (ICDE), pp. 403–418, 2002.

[BCP01] A. Bonifati, S. Ceri, and S. Paraboschi. Pushing Reactive Services to XML
Repositories Using Active Rules. In WWW Conf. (WWW 2001), 2001.

[BDG+] H. Boley, M. Dean, B. Grosof, M. Sintek, B. Spencer, S. Tabet, and G. Wag-
ner. FOL RuleML: The First-Order Logic Web Language.
http://www.ruleml.org/fol/.

[BP05] F. Bry and P.-L. Pătrânjan. Reactivity on the Web: Paradigms and Ap-
plications of the Language XChange. In ACM Symp. Applied Computing,
2005.

[BPW02] J. Bailey, A. Poulovassilis, and P. T. Wood. An Event-Condition-Action
Language for XML. In WWW Conf., 2002.

[BS02] F. Bry and S. Schaffert. Towards a declarative query and transformation
language for XML and semistructured data: Simulation Unification. In
Intl. Conf. on Logic Programming (ICLP), Springer LNCS 2401, 2002.

[CKAK94] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Compos-
ite Events for Active Databases: Semantics, Contexts and Detection. In
VLDB, 1994.

[KL89] M. Kifer and G. Lausen. F-Logic: A higher-order language for reasoning
about objects, inheritance and scheme. In ACM SIGMOD, pp. 134–146,
1989.

[MAA05] W. May, J. J. Alferes, and R. Amador. An Ontology- and Resources-Based
Approach to Evolution and Reactivity in the Semantic Web. In Ontologies,
Databases and Semantics (ODBASE), to appear in Springer LNCS, 2005.

[May04] W. May. XPath-Logic and XPathLog: A Logic-Programming Style XML
Data Manipulation Language. Theory and Practice of Logic Programming,
4(3), 2004.

[Mil83] R. Milner. Calculi for Synchrony and Asynchrony. Theoretical Computer
Science, pp. 267–310, 1983.

[PPW03] G. Papamarkos, A. Poulovassilis, and P. T. Wood. Event-Condition-Action
Rule Languages for the Semantic Web. In Workshop on Semantic Web and
Databases (SWDB’03), 2003.

[PPW04] G. Papamarkos, A. Poulovassilis, and P. T. Wood. RDFTL: An Event-
Condition-Action Rule Languages for RDF. In Hellenic Data Management
Symposium (HDMS’04), 2004.

[RML] Rule Markup Language (RuleML). http://www.ruleml.org/.
[TIHW01] I. Tatarinov, Z. G. Ives, A. Halevy, and D. Weld. Updating XML. In ACM

SIGMOD, pp. 133–154, 2001.
[XML00] XML:DB. XUpdate - XML Update Language.

http://xmldb-org.sourceforge.net/xupdate/, 2000.

Towards an Abstract Syntax and Direct-Model
Theoretic Semantics for RuleML

Adrian Giurca and Gerd Wagner

Institute of Informatics, Brandenburg University of Technology at Cottbus
{Giurca,G.Wagner}@tu-cottbus.de

Abstract. This paper contains a proposal of an abstract syntax and a
model theoretic semantics for NafNegDatalog, sublanguage of RuleML
[9]. The model-theoretic semantics use the partial logic ([7], [10]) to pro-
vide an interpretation and a satisfaction relation, and provide a formal
meaning for RuleML knowledge bases written in the abstract syntax.

Keywords: rule markup languages, RuleML, abstract syntax, seman-
tics, partial logic.

A. Adi et al. (Eds.): RuleML 2005, LNCS 3791, pp. 45–55, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

46 Adrian Giurca and Gerd Wagner

Towards an Abstract Syntax and Direct-Model Theoretic Semantics 47

48 Adrian Giurca and Gerd Wagner

Towards an Abstract Syntax and Direct-Model Theoretic Semantics 49

50 Adrian Giurca and Gerd Wagner

Towards an Abstract Syntax and Direct-Model Theoretic Semantics 51

52 Adrian Giurca and Gerd Wagner

Towards an Abstract Syntax and Direct-Model Theoretic Semantics 53

54 Adrian Giurca and Gerd Wagner

Towards an Abstract Syntax and Direct-Model Theoretic Semantics 55

A. Adi et al. (Eds.): RuleML 2005, LNCS 3791, pp. 56–70, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Semantic Web Framework for Interleaving Policy
Reasoning and External Service Discovery

Jinghai Rao and Norman Sadeh

School of Computer Science, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA, 15213, USA

{sadeh,jinghai}@cs.cmu.edu

Abstract. Enforcing rich policies in open environments will increasingly re-
quire the ability to dynamically identify external sources of information neces-
sary to enforce different policies (e.g. finding an appropriate source of location
information to enforce a location-sensitive access control policy). In this paper,
we introduce a semantic web framework and a meta-control model for dynami-
cally interleaving policy reasoning and external service discovery and access.
Within this framework, external sources of information are wrapped as web
services with rich semantic profiles allowing for the dynamic discovery and
comparison of relevant sources of information. Each entity (e.g. user, sensor,
application, or organization) relies on one or more Policy Enforcing Agents re-
sponsible for enforcing relevant privacy and security policies in response to in-
coming requests. These agents implement meta-control strategies to dynami-
cally interleave semantic web reasoning and service discovery and access. The
paper also presents preliminary empirical results. This research has been con-
ducted in the context of myCampus, a pervasive computing environment aimed
at enhancing everyday campus life at Carnegie Mellon University.

1 Introduction

The increasing reliance of individuals and organizations on the Web to help mediate a
variety of activities is giving rise to a demand for richer security and privacy policies
and more flexible mechanisms to enforce these policies. People may want to selec-
tively expose sensitive information to others based on the evolving nature of their
relationships, or share information about their activities under some conditions. This
trend requires context-sensitive security and privacy policies, namely policies whose
conditions are not tied to static considerations but rather conditions whose satisfac-
tion, given the very same actors (or principals), will likely fluctuate over time. En-
forcing such policies in open environments is particularly challenging for several
reasons:

− Sources of information available to enforce these policies may vary from one
principal to another (e.g. different users may have different sources of location
tracking information made available through different cell phone operators);

− Available sources of information for the same principal may vary over time (e.g.
when a user is on company premises her location may be obtained from the wire-
less LAN location tracking functionality operated by her company, but, when she
is not, this information can possibly be obtained via her cell phone operator);

A Semantic Web Framework for Interleaving Policy Reasoning 57

− Available sources of information may not be known ahead of time (e.g. new loca-
tion tracking functionality may be installed or the user may roam into a new area).

Accordingly, enforcing context-sensitive policies in open domains requires the
ability to opportunistically interleave policy reasoning with the dynamic identifica-
tion, selection and access of relevant sources of contextual information. This re-
quirement exceeds the capability of decentralized trust management infrastructures
proposed so far and calls for privacy and security enforcing mechanisms capable of
operating according to significantly less scripted scenarios than is the case today. It
also calls for much richer service profiles than those found in early web service stan-
dards.

We introduce a semantic web framework and a meta-control model for dynami-
cally interleaving policy reasoning and external service identification, selection and
access. Within this framework, external sources of information are wrapped as web
services with rich semantic profiles allowing for the dynamic discovery and compari-
son of relevant sources of information. While the framework is applicable to a num-
ber of domains where policy reasoning requires the automatic discovery and access of
external sources of information (e.g. virtual/collaborative enterprise scenarios, coali-
tion force scenarios, inter-agency homeland security collaboration scenarios), we look
more particularly at the issue of enforcing privacy and security policies in pervasive
computing environments. In this context, the owner of information sources (e.g. user,
sensor, application, or organization) relies on one or more Policy Enforcing Agents
(PEA) responsible for enforcing relevant privacy and security policies in response to
incoming requests. These agents implement meta-control strategies to opportunisti-
cally interleave policy enforcement, semantic web reasoning and service discovery
and access. The example used in this paper introduces one particular type of PEA we
refer to as Information Disclosure Agents (IDA). These agents are responsible for
enforcing two types of policies: access control policies and obfuscation policies. The
latter are policies that manipulate the accuracy or inaccuracy with which information
is released (e.g. disclosing whether someone is busy or not rather than disclosing
what they are actually doing). The research reported herehas been conducted in the
context of MyCampus, a pervasive computing environment aimed at enhancing eve-
ryday campus life at Carnegie Mellon University [7, 8, 19, 20].

The remainder of this paper is organized as follows. Section 2 provides a brief
overview of relevant work in decentralized trust management and semantic web tech-
nologies. Section 3 introduces an Information Disclosure Agent architecture for en-
forcing privacy and security policies. It details its different modules and how their
operations are opportunistically orchestrated by meta-control strategies in response to
incoming requests. A motivating example is presented in Section 4. Section 5 details
our meta-control model based on query status information. Operation of the architec-
ture is illustrated in Section 6. Section 7 discusses our service discovery model. Sec-
tion 8 presents our current implementation and discusses initial empirical results.
Concluding remarks are provided in Section 9.

2 Related Work
The work presented in this paper builds on concepts of decentralized trust manage-
ment developed over the past decade (see [3] as well as more recent research such as

58 Jinghai Rao and Norman Sadeh

[2,11,14]). Most recently, a number of researchers have started to explore opportuni-
ties for leveraging the openness and expressive power associated with semantic web
frameworks in support of decentralized trust management (e.g. [1, 4, 9, 12, 13, 23,
24] to name just a few). Our own work in this area has involved the development of
semantic web reasoning engines (or “Semantic e-Wallets”) that enforce context-
sensitive privacy and security policies in response to requests from context-aware
applications implemented as intelligent agents [7, 8]. Semantic e-Wallets play a dual
role of gatekeeper and clearinghouse for sources of information about a given entity
(e.g. user, device, service or organization). In this paper, we introduce a more decen-
tralized framework, where policies can be distributed among any number of agents
and web services. The main contribution of the work discussed here is in the devel-
opment and initial evaluation of a semantic web framework and a meta-control model
for opportunistically interleaving policy reasoning and web service discovery in en-
forcing context-sensitive policies (e.g. privacy and security policies). This contrasts
with the more scripted approaches to interleaving these two processes adopted in our
earlier work on Semantic e-Wallets [7,8].

Our research builds on recent work on semantic web service languages, (e.g.
OWL-S [26] and WSMO [27]) and semantic web service discovery functionality.
Early work in this area by Paolucci et al. [28] focused on matching semantic descrip-
tions of services being sought with semantic profiles of services being offered that
include descriptions of input, output, preconditions and effects (see also our own
work in this area [30]). More recently discovery functionality has also been proposed
that takes into account security annotations [29].

Other relevant work includes languages for capturing user privacy preferences
such as P3P’s APPEL language [25], and for capturing access control privileges such
as the Security Assertion Markup Language (SAML) [17], the XML Access Control
Markup Language (XACML) [16] and the Enterprise Privacy Authorization Lan-
guage (EPAL) [5]. These languages do not take advantage of semantic web concepts.
On the other hand [12] describes a semantic web policy framework for distributed
policy management. The framework allows policies to be described in terms of deon-
tic concepts and speech acts. It has been used to encode security policies of web re-
sources, agents and web services. Work by Uszok et al. has also resulted in the inte-
gration of KAoS policy services with semantic web services [24]. Our own work on
Semantic e-Wallets as well as research described in this paper has relied on an exten-
sion of OWL Lite known as ROWL to represent security and privacy policies that
refer to concepts defined with respect to OWL ontologies [7, 8]. While ROWL has
been a convenient extension of OWL to represent and reason about rules, it is by no
means the only available option. In fact, ROWL shares many traits with several other
languages. One better known language in this area is RuleML [18], a proposed stan-
dard for a rule language, based on declarative logic programs. Another is SWRL [10],
which uses OWL-DL to describe a subset of RuleML. The focus of the present paper
is not on semantic web rule languages but rather on a semantic web framework and a
meta-control model for enforcing context-sensitive policies. For the purpose of this
paper, the reader can simply assume that the expressiveness of our own ROWL lan-
guage is by and large similar to that of a language like SWRL with both languages
supporting the combination of Horn-like rules with one or more OWL knowledge
bases.

A Semantic Web Framework for Interleaving Policy Reasoning 59

3 Overall Approach and Architecture

We consider an environment where sources of information are all modeled as ser-
vices that can be automatically discovered based on rich ontology-based service pro-
files advertised in service directories. Each service has an owner, whether an individ-
ual or an organization, who is responsible for setting policies for it, with policies
represented as rules. In this paper we focus on access control policies and obfuscation
policies enforced by Information Disclosure Agents, though the framework we pre-
sent could readily be used to enforce a variety of other policies.

Fig. 1. Information Disclosure Agent: Overall Architecture

An Information Disclosure Agent (IDA) receives requests for information or ser-
vice access. In processing these requests, it is responsible for enforcing access control
and obfuscation polices specified by its owner and captured in the form of rules. As it
processes incoming queries (or, more generally, requests), the agent records status
information that helps it monitor its own progress in enforcing its policies and in
obtaining the necessary information to satisfy the request. Based on this updated
query status information, a meta-control module (“meta-controller”) dynamically
orchestrates the operations of modules it has at its disposal to process queries (Fig. 1).
As these modules report on the status of activities they have been tasked to perform,
this information is processed by a housekeeping module responsible for updating
query status information (e.g. changing the status of a query from being processed to
having been processed). Simply put, the agent continuously cycles through the fol-
lowing three basic steps:

60 Jinghai Rao and Norman Sadeh

1. The meta-controller analyzes its latest query status information and invokes one
or more modules to perform particular tasks. As it invokes these modules the
meta-controller also updates relevant query status information (e.g. updates the
status of a query from “not yet processed” to “being processed”).

2. Modules complete their tasks (whether successfully or not) and report back to the
housekeeping module – occasionally modules may also report on their ongoing
progress in handling a task

3. The housekeeping module updates detailed status information based on informa-
tion received from other modules and performs additional housekeeping activities
(e.g. caching the results of recent requests to mitigate the effects of possible denial
of service attacks, cleaning up status information that has become irrelevant, etc.)

For obvious efficiency reasons, while an IDA consists of a number of logical
modules, each operating according to a particular set of rules, it is typically imple-
mented as a single reasoning engine. In our current work we use JESS [6], a high-
performance Java-based rule engine that supports both forward and backward chain-
ing, the latter by reifying "needs for facts" as facts themselves, which in turn trigger
forward-chaining rules. The following provides a brief description of each of the
modules orchestrated by an IDA’s meta-controller:

− Query Decomposition Module takes as input a particular query and breaks it down
into elementary needs for information, which can each be thought of as subgoals
or sub-queries. We refer to these as Query Elements.

− Access Control Module is responsible for determining whether a particular query
or sub-query is consistent with relevant access control policies – modeled as ac-
cess control rules. While some policies can be checked just based on facts con-
tained in the agent’s local knowledge base, many policies require obtaining in-
formation from a combination of both local and external sources. When this is the
case, rather than immediately deciding whether or not to grant access to a query,
the Access Control Module needs to request additional facts – also modeled as
Query Elements.

− Obfuscation Module sanitizes information requested in a query according to rele-
vant obfuscation policies – also modeled as rules. As it evaluates relevant obfus-
cation policies, this module too can post requests for additional Query Elements.

− Local Information Reasoner corresponds to domain knowledge (facts and rules)
known locally to the IDA

− Service Discovery Module helps the IDA identify potential sources of information
to complement its local knowledge. External services can be identified through
external service directories (whether public or not), by communicating via the
agent’s External Communication Gateway. Rather than relying solely on search-
ing service directories, the service discovery module also allows for the specifica-
tion of what we refer to as service identification rules. These rules directly map
information needs on pre-specified services. An example of such rule might be:
“when looking for my current activity, first try my calendar service”. When avail-
able, such rules can yield significant speedups, while allowing the module to re-
vert to more general service directory searches when they fail. We currently as-
sume that all service directories rely on OWL-S to advertise service profiles (see
Section 7).

A Semantic Web Framework for Interleaving Policy Reasoning 61

− Service Invocation Module allows the agent to invoke relevant services. It is im-
portant to note that, in our architecture, each service can have its own IDA. As re-
quests are sent to services, their IDAs may in turn respond with requests for addi-
tional information to enforce their own policies.

− User Interface Agent: The meta-controller treats its user as just another module
who is modeled both as a potential source of domain knowledge (e.g. to acquire
relevant contextual information) as well as a potential source of meta-control
knowledge (e.g. if a particular query element proves too difficult to locate, the
user may be asked whether to stop looking - she could even be offered the option
of making an assumption about the particular value of the query element).

Modules support one or more services that can each be invoked by the meta-
controller along with relevant parameter values. For instance, the meta-controller may
invoke the query decomposition module and request it to decompose a particular
query; it may invoke the access control module and task it to proceed in evaluating
access control policies relevant to a particular query; etc. In addition, meta-control
strategies do not have to be sequential. For instance, it may be advantageous to im-
plement strategies that enable the IDA to concurrently request the same or different
facts from several services.

4 An Example

The following scenario will help illustrate how IDAs operate. Consider Mary and
Bob, two colleagues who work for company X. They are both field technicians who
constantly visit other companies. Mary’s team changes from one day to the next de-
pending on her assignment. Mary relies on an IDA to enforce her access control poli-
cies. In particular, she has specified that she is only willing to disclose the room that
she is in to members of her team and only when they are in the same building.

Suppose that today Bob and Mary are on the same team. Bob is querying Mary’s
IDA to find out about her location. For the purpose of this scenario, we assume that
Mary and Bob are visiting Company Y and are both in the same building at the time
the query is issued. Both Bob and Mary have cell phone operators who can provide
their locations at the level of the building they are in – but not at a finer level. Upon
entering Company Y, Mary also registered with the company’s location tracking
service, which can track her at the room level. For the purpose of this scenario, we
further assume that Mary’s IDA needs to identify a service that can help it determine
whether Bob is on her team. A discovery step helps identify a service operated by
Company X (Bob and Mary’s employer) that contains up-to-date information about
teams of field technicians. This requires a directory with rich semantic service pro-
files, describing what each service does (e.g. type of information it can provide, level
of accuracy or recency, etc.). To be interpretable by agents such as Mary’s IDAs,
these profiles also need to refer to concepts specified in shared ontologies (e.g. con-
cepts such as projects, teams, days of the week, etc.). Once Mary’s IDA has deter-
mined that Bob is on her team today, it proceeds to determine whether they are in the
same building by asking Bob’s IDA about the building he is in. Here Bob’s IDA goes
through a service discovery step of its own and determines that a location tracking
service offered by his cell phone operator is adequate. Completion of the scenario

62 Jinghai Rao and Norman Sadeh

involves a few additional steps of the same type. Note that in this scenario we have
assumed that Mary’s IDA trusts the location information returned by Bob’s IDA. It is
easy to imagine scenarios where her IDA would be better off looking for a com-
pletely independent source of information. It is also easy to see that these types of
scenarios can lead to deadlocks. This is further discussed later in this paper.

Fig. 2. Illustration of first few steps involved in processing the example

5 Query Status Model

An IDA’s Meta Controller relies on meta-control rules to analyze query status infor-
mation and determine which module(s) to activate next. Meta-control rules are mod-
eled as if-then clauses, with Left Hand Sides (LHSs) specifying their premises and
Right Hand Sides (RHSs) their conclusions. LHS elements refer to query status in-
formation, while RHS elements contain facts that result in module activations. Query
status information helps keep track of how far along the IDA is in obtaining the in-
formation required by each query and in enforcing relevant policies. Query status
information in the LHS of meta-control rules is expressed according to a taxonomy of
predicates that helps the agent keep track of queries and query elements - e.g.,
whether a query has been or is being processed, what individual query elements it has
given rise to, whether these elements have been cleared by relevant access control
policies and sanitized according to relevant obfuscation control policies, etc. All
status information is annotated with time stamps. Specifically, query status informa-
tion includes:

A Semantic Web Framework for Interleaving Policy Reasoning 63

− Status predicates to describe the status of a query or query element
− A query ID or query element ID to which the predicate refers
− A parent query ID or parent query element ID to help keep track of dependen-

cies (e.g. a query element may be needed to help check whether another query
element is consistent with a context-sensitive access control policy). These de-
pendencies, if passed between IDA agents, can also help detect deadlocks (e.g.
two IDA agents each waiting for information from the other to enforce their poli-
cies)

− A time stamp that describes when the status information was generated or up-
dated. This information is critical when it comes to determining how much time
has elapsed since a particular module or external service was invoked. It can help
the agent look for alternative external services or decide when to prompt the user
(e.g. to decide whether to wait any longer).

A sample of query status predicates is provided in Table 1. Some of the predicates
list in the Table will be used in Section 6, when we revisit the example introduced in
Section 4. Clearly, different taxonomies of predicates can lead to more or less sophis-
ticated meta-control strategies. For the sake of clarity, status predicates in Table 1 are
organized in six categories: 1) communication; 2) query; 3) query elements; 4) access
control; 5) obfuscation and 6) information collection.

Query status information is updated by asserting new facts (with old information
being cleaned up by the IDA’s housekeeping module). As query updates come in,
they trigger one or more meta-control rules, which in turn result in additional query
status information updates and the eventual activation of one or more of the IDA’s
modules. As already mentioned earlier, this meta-control architecture can also be
used to model the user as a module that can be consulted by the meta-controller, e.g.
to ask for a particular piece of domain knowledge or to decide whether or not to
abandon a particular course of action such as looking for an external service capable
of providing a particular query element.

6 Updating Query Status Information: Example Revisited
The following illustrates the processing of a query by an IDA, using the scenario
introduced in Fig. 2. Specifically, Fig. 3 depicts some of the main steps involved in
processing a request from Bob about the room Mary is in, highlighting some of the
main query status information updates. Bob’s query about the room Mary is in is first
processed by the IDA’s Communication Gateway, resulting in a query information
status update indicating that a new query has been received. This information is ex-
pressed as a collection of (predicate subject object) triples of the form:
(triple "Status#predicate" "status1" "query-received")
(triple "Query#queryId" "status1" "query1")
(triple "Query#parentId" "status1" nil)
(triple "Query#timestamp" "querystatus1" "324455")
(triple "Query#sender" "query1" "bob")
(triple "Query#element" "query1" "element1")
(triple "Ontology#office" "mary" "element1")

Next, the meta-controller activates the Query Decomposition Module, resulting in
the creation of two query elements – for the sake of simplicity we omit Mary’s obfus-
cation policy: one query element to establish whether this request is compatible with
Mary’s access control policies and the other to obtain the room she is in:

64 Jinghai Rao and Norman Sadeh

Table 1. Sample list of status predicates

 Sample Status Predicates Description
Query-Received A particular query has been received.
Sending-Response Response to a query is being sent
Response-Sent Response has been successfully sent

1)

Response-Failed Response failed (e.g. message bounced back)
Processing Query Query is being processed
Query Decomposed Query has been decomposed (into primitive query elements)
All-Elements-Available All query elements associated with a given query are available (i.e.

all the required information is available)
All-Elements-Cleared All query elements have been cleared by relevant access control

policies
Clearance-Failed Failed to clear one or more access control policies
All-Elements-Sanitized All query elements have been sanitized according to relevant obfus-

cation policies

2)

Sanitization-Failed Failed to pass one or more obfuscation policies
Element-Needed A query element is needed. Query elements may result from the

decomposition of a query or may be needed to enforce policies. The
query element’s origin helps distinguish between these different
cases

Processing-Element A need for a query element is being processed
Element-Available Query element is available
Element-Cleared Query element has been cleared by relevant access control policies
Clearance-Failed Failed to pass one or more access control policies
Element-Sanitized Query element has been sanitized using relevant obfuscation policies

3)

Sanitization-Failed Failed to pass one or more obfuscation policies

4) Clearance-Needed A query or query element needs to be cleared by relevant access
control rules

5) Sanitization-Needed Query or query element has to be sanitized subject to relevant obfus-
cation policies

Check-Condition Check whether a condition is satisfied. Special type of query element.
Element-not-locally-
available

The value of a query element can not be obtained from the local
knowledge base

Element-need-service A query element requires the identification of a relevant service
No-service-for-Element No service could be identified to help answer a query element. This

predicate can be refined to differentiate between different types of
services (e.g. local versus external)

Service-identified One or more relevant services have been identified to help answer a
query element

Waiting-for-service-
response

A query element is waiting for a response to a query sent to a service
(e.g. query sent to a location tracking service to help answer a query
element corresponding to a user’s location)

Failed-service-response A service failed to provide a response. Again this predicate could be
refined to distinguish between different types of failure (e.g. service
down, access denied, etc.)

6)

service-response-
available

A response has been returned by the service. This will typically result
in the creation of an “Element-Available” status update.

(triple "Status#predicate" "status2" "clearance-needed")
(triple "Status#predicate" "status3" "element-needed")

Let us assume that the meta-controller decides to first focus on the “clearance-
needed” query element and invokes the Access Control Module. This module deter-
mines that two conditions need to be checked and accordingly creates two new query
elements (“check-conditions”). One condition requires checking whether Bob and
Mary are on the same team:

A Semantic Web Framework for Interleaving Policy Reasoning 65

(triple "Status#predicate" "status4" "element-needed")
(triple "Query#queryId" "status4" "element2")
(triple "Query#parentId" "status4" "query1")
(triple "Query#condition" "element2" "People#same-team")
(triple "People#same-team" "mary" "bob")

Fig. 3. Query status updates for a fragment of the scenario introduced in Fig 2

This condition in turn requires a series of information collection steps that are or-
chestrated by the meta-control rules in Mary’s IDA. In this example, we assume that
the IDA’s local knowledge base knows which team Mary is on but not Bob. Accord-
ing the following query status information update is eventually generated:

(triple "Status#predicate" "status5" "element-not-locally-available")
(triple "Query#queryId" "status5" "element3")
(triple "Query#parentId" "status5" "element2")
(triple "People#team" "bob" "element3")

Mary’s IDA has a meta-control rule to initiate service discovery when a query ele-
ment can not be found locally. The rule, expressed in CLIPS [31], is of the form:

(triple "Status#predicate" ?s1 "element-not-locally-available")
(triple "Status#predicate" ?s2 "element-needed ")
(triple "Query#queryId" ?s1 ?e1)
(triple "Query#queryId" ?s2 ?e1)
=>
(assert (triple "predicate" ?newstatus "element-need-service"))
(assert (triple "Query#queryId" ?newstatus ?e1)

Using this rule, the meta-controller now activates the Service Discovery Module. A
service to find Bob’s team is identified (e.g. a service operated by company X). This
results in a query status update of the type “service-identified”.

66 Jinghai Rao and Norman Sadeh

(triple "Status#predicate" ?s1 "element-need-service")
(triple "Status#predicate" ?s2 "service-identified")
(triple "Query#queryId" ?s1 ?e1)
(triple "Query#queryId" ?s2 ?service)
(triple "Query#parentId" ?s2 ?e1)
=>
(assert (triple "Status#predicate" ?newstatus "waiting-for-service-
response"))
(assert (triple "Status#queryId" ?newstatus ?service))

Note that, if there are multiple matching services, the service discovery module
needs rules to help select among them.

Let us assume that the service identified by the service discovery module is now
invoked and that it returns the team that Bob is on. The Housekeeping module up-
dates the necessary Query Status Information, indicating among other things that
information about Bob’s team has been found (“element-available”) and cleaning old
status information. This is done using a rule of the type:

?x <- (triple "Status#predicate" ?s1 "waiting-for-service-response")
?y <- (triple "Query#queryId" ?s1 ?service)
(triple "Status#predicate" ?s2 "service-response-available")
(triple "Query#queryId" ?s2 ?result)
=>
(retract ?x)
(retract ?y)
(assert (triple "Status#predicate" ?newstatus "element-available"))
(assert (triple "Query#queryId" ?newstatus ?result))

The scenario continues through several similar steps (see Fig. 3)

7 The Service Discovery Model

A central element of our architecture is the ability of IDA agents to dynamically iden-
tify sources of information needed by query elements. Sources of information are
modeled as semantic web services and may operate subject to their own access con-
trol and obfuscation policies enforced by their own IDA agents. Accordingly service
invocation is itself implemented in the form of queries sent to a service’s IDA agent.

Each service (or source of information) is described by a ServiceProfile in OWL-S
[26]. In general, a ServiceProfile consists of three parts: (1) information about the
provider of the service, (2) information about the service’s functionality and (3) in-
formation about non-functional attributes [21]. Functional attributes include the ser-
vice's inputs, outputs, preconditions and effects. Non-functional attributes are other
properties such as accuracy, quality of service, price, location, etc. An example of a
location tracking service operated on the premises of Company Y can be described as
follows:

<profileHierarchy:InformationService rdf:ID="PositioningServ">
 <!-- reference to the service specification -->
 <service:presentedBy rdf:resource="&Serv;#PositioningServ"/>
 <profile:has_process rdf:resource="&Process;#PositionProc"/>
 <profile:serviceName Positioning_Service_in_Y />

 <!-- specification of quality rating for profile -->
 <profile:qualityRating>
 <profile:QualityRating rdf:ID="SERVQUAL">
 <profile:ratingName SERVQUAL />
 <profile:rating rdf:resource="&servqual;#Good"/>

A Semantic Web Framework for Interleaving Policy Reasoning 67

 </profile:QualityRating>
 </profile:qualityRating>

 <profile:hasPrecondition rdf:resource="&Process;#LocateInCompanyY"/>
 <profile:hasOutput rdf:resource="&Process;#RoomNoOutput"/>
</profileHierarchy:InformationService>

When invoking a service it has identified, an IDA may opt to provide upfront all
the input parameters required by that service or it may withhold one or more of these
parameters. The latter option forces the service to request the missing input parame-
ters from the IDA, thereby enabling the IDA to more fully determine whether the
invoked service meets its policies. This option is however more computation and
communication intensive.

Service outputs are represented as OWL classes, which play the role of a typing
mechanism for concepts and resources. Using OWL also allows for some measure of
semantic inference as part of the service discovery process. If an agent requires a
service that produces as output a contextual attribute of a specific type, then all ser-
vices that output the value of that attribute as a subtype are potential matches.

Service preconditions and effects are also used for service matching. For instance.,
the positioning service above has a precondition specifying that it is only available on
company Y’s premises.

8 Current Implementation: Evaluation and Discussion
Our policy enforcing agents are currently implemented in JESS, a high-performance
rule-based engine in Java [6]. Domain knowledge, including service profiles, queries,
access control policies and obfuscation policies are expressed in OWL [8]. As already
indicated earlier ROWL the language we currently use to define rules that relate to
ontologies could easily be replaced with languages such as RuleML, SWRL or some
similar language. XSLT transformations are used to translate OWL facts and exten-
sions of OWL (e.g. to model rules and queries) into CLIPS. Agent modules are or-
ganized as JESS modules. Currently all information exchange between agents is done
in the clear and without digital signatures. In the future, we plan to use SSL or some
equivalent protocol for all information exchange. This will include signing all queries
and responses.

We have evaluated our solution on an IBM laptop with a 1.80GHz Pentium M
CPU and 1.50GB of RAM. The laptop was running Windows XP Professional OS,
Java SDK 1.4.1 and Jess 6.1. As part of the evaluation, we implemented the example
introduced in Section 4 and 6, using a light-weight rule/fact set. The set included 22
rules and 178 facts and features a single semantic service directory with 50 services,
each represented by 5 to 10 Jess rules. A breakdown of the CPU times required to
process Bob’s query is provided in the table below. For each module the table pro-
vides a cumulative CPU time, namely the sum of the CPU times of all invocations of
that module in processing the query.

Module CPU time in millisecond
Meta-Controller 28
Access-Controller 32
Local-KB 49
Service discovery / invocation 72
Total 181

68 Jinghai Rao and Norman Sadeh

While these results provide just one data point, they seem to suggest that our solu-
tion can be viewed as practical in at least some simple settings. It should be noted that
our solution is not JESS-specific. At the same time, a significant number of experi-
ments still need to be conducted to gain a more comprehensive understanding of the
scalability of our approach. Other complex issues such as dealing with deadlocks or
reasoning about provenance (i.e. possible conflicts of interest of information sources
used to build a proof) and inconsistent policies also require significant additional
work. Differentiating between situations where a policy has been shown not to be
satisfied and situations where the agent has not yet been able to determine whether a
policy is satisfied will likely call for differentiating between classical negation and
“negation as failure”. One possible solution here would be to use a framework such
as SweetRules as an add-on to our semantic web reasoner [22].

9 Concluding Remarks

In this paper, we presented a semantic web framework for dynamically interleaving
policy reasoning and external service discovery and access. Within this framework,
external sources of information are wrapped as web services with rich semantic pro-
files allowing for the dynamic discovery and comparison of relevant sources of in-
formation. Each entity (e.g. user, sensor, application, or organization) relies on one or
more Policy Enforcing Agents responsible for enforcing relevant privacy and security
policies in response to incoming requests. These agents implement meta-control
strategies to dynamically interleave semantic web reasoning, service discovery and
access. These meta-control strategies can also be extended to treat the user as another
source of information, e.g. to confirm whether a given fact holds or to provide meta-
control guidance such as deciding when to abandon trying to determine whether a
policy is satisfied.

The Information Disclosure Agent presented in this paper is just one instantiation
of our more general concept of Policy Enforcing Agents (PEAs). Other policies (e.g.
information collection policies, notification preference policies) will typically rely on
slightly different sets of modules and different meta-control strategies, yet they could
all be implemented using the same meta-control architecture and many of the same
principles presented in this paper. In general, PEAs rely on a taxonomy of query
information status predicates to monitor their own progress in processing incoming
queries and enforcing relevant security and privacy policies. They use meta-control
rules to decide which action to take next (e.g. decomposing queries, seeking local or
external information, etc.). Preliminary evaluation of an early implementation of our
framework seems encouraging. At the same time, it is easy to see that the generality
of the framework also gives rise to a number of challenging issues. Future work will
focus on exploring scalability issues, evaluating tradeoffs between the expressiveness
of privacy and security policies we allow and associated computational and commu-
nication requirements. Other issues of particular interest include studying opportuni-
ties for concurrency (e.g. simultaneously accessing multiple web services), dealing
with real-time meta-control issues (e.g. deciding when to give up or when to look for
additional sources of information/web services), breaking deadlocks [15], and inte-
grating the user as a source of information.

A Semantic Web Framework for Interleaving Policy Reasoning 69

Acknowledgements
The work reported herein has been supported in part under DARPA contract F30602-
02-2-0035 (“DAML initiative”) and in part under ARO research grant D20D19-02-1-
0389 ("Perpetually Available and Secure Information Systems") to Carnegie Mellon
University’s CyLab.

This research has also benefited from interactions with Lujo Bauer, Lorrie Cranor,
Fabien Gandon, Jason Hong, Bruce McLaren, Mike Reiter and Peter Steenkiste.

References
1. R. Ashri, T. Payne, D. Marvin, M. Surridge and S. Taylor, Towards a Semantic Web Secu-

rity Infrastructure. In Proceedings of Semantic Web Services Symposium, 2004.
2. L. Bauer, M.A. Schneider and E.W. Felten. "A General and Flexible Access Control Sys-

tem for the Web", In Proceedings of the 11th USENIX Security Symposium, August 2002.
3. M. Blaze, J. Feigenbaum, an J. Lacy. “Decentralized Trust Management”. In Proceedings

of IEEE Conference on Security and Privacy. Oakland, CA. May 1996.
4. L. Ding, P. Kolari, T. Finin, A. Joshi, Y. Peng and Y. Yesha. On Homeland Security and

the Semantic Web: A Provenance and Trust Aware Inference Framework, In Proceedings
of the AAAI Spring Symposium on AI Technologies for Homeland Security, 2005.

5. IBM, EPAL 1.1. http://www.zurich.ibm.com/security/enterprise-privacy/epal/.
6. E. Friedman-Hill. Jess in Action: Java Rule-based Systems, Manning Publications Com-

pany, June 2003, ISBN 1930110898, http://herzberg.ca.sandia.gov/jess/
7. F. Gandon, and N. Sadeh. A semantic e-wallet to reconcile privacy and context awareness.

In Proceedings of the Second International Semantic Web Conference (ISWC03), 2003.
8. F. Gandon, and N. Sadeh. Semantic web technologies to reconcile privacy and context

awareness. Web Semantics Journal, 1(3), 2004.
9. R. Hull, B. Kumar, D. Lieuwen, P. Patel-Schneider, A. Sahuguet, S. Varadarajan, and A.

Vyas. Enabling context-aware and privacy-conscious user data sharing. In Proceedings of
2004 IEEE International Conference on Mobile Data Management, January 2004.

10. I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof and M. Dean, SWRL: Se-
mantic Web Rule Language Combining OWL and RuleML. Version 0.6.

11. T. van der Horst, T. Sundelin, K. E. Seamons, and C. D. Knutson. Mobile Trust Negotia-
tion: Authentication and Authorization in Dynamic Mobile Networks. Eighth IFIP Confer-
ence on Communications and Multimedia Security, Lake Windermere, England, 2004

12. L. Kagal, T. Finin, and A. Joshi. A policy language for a pervasive computing environ-
ment. IEEE 4th International Workshop on Policies for Distributed Systems and Networks,
2003

13. L. Kagal, M. Paolucci, N. Srinivasan, G. Denker, T. Finin and K. Sycara, Authorization
and Privacy for Semantic Web Services, In Proceedings of Semantic Web Services Sympo-
sium, AAAI 2004 Spring Symposium Series, Stanford University, California, March 2004.

14. L.Bauer, S. Garriss, J. McCune, M.K. Reiter, J. Rouse, and P Rutenbar, “Device-Enabled
Authorization in the Grey System”, Submitted to USENIX Security 2005.

15. T. Leithead, W. Nejdl, D. Olmedilla, K. Seamons, M. Winslett, T. Yu, and C. Zhang, How
to Exploit Ontologies in Trust Negotiation. Workshop on Trust, Security, and Reputation
on the Semantic Web, part of ISWC04, Hiroshima, Japan, November 2004.

16. OASIS, eXtensible Access Control Markup Language (XACML)
17. OASIS, Security Assertion Markup Language (SAML)
18. The Rule Markup Initiative. (http://www.ruleml.org)
19. N. M. Sadeh, T.C. Chan, L. Van, O. Kwon, and K. Takizawa. Creating an open agent envi-

ronment for context-aware m-commerce. In Agentcities: Challenges in Open Agent Envi-
ronments, 2003.

70 Jinghai Rao and Norman Sadeh

20. N.M. Sadeh, F. Gandon, and Oh Byung Kwon. Ambient Intelligence: The MyCampus Ex-
perience. Carnegie Mellon University Technical Report. CMU-ISRI-05-123. June 2005.

21. J. O'Sullivan, D. Edmond, and A.T. Hofstede. What's in a service? Towards accurate de-
scription of non-functional service properties. Distributedand Parallel Databases,
12:117.133, 2002.

22. SweetRules. http://sweetrules.projects.semwebcentral.org/
23. J. Undercoffer, F. Perich, A .Cedilnik, L. Kagal, and A. Joshi. A secure infrastructure for

service discovery and access in pervasive computing. ACM Monet: Special Issue on Secu-
rity in Mobile Computing Environments, October 2003

24. A. Uszok, J. M. Bradshaw, R. Jeffers, M. Johnson, A. Tate, J. Dalton and S. Aitken, Policy
and Contract Management for Semantic Web Services. In Proceedings of Semantic Web
Services Symposium, AAAI 2004 Spring Symposium Series, Stanford California.

25. A P3P Preference Exchange Language(APPEL1.0)
http://www.w3.org/TR/P3P-preferences/

26. OWL-S: Semantic Markup for Web Services. http://www.w3.org/Submission/OWL-S
27. Web Service Modeling Ontology, WSMO. http://www.wsmo.org/
28. M. Paolucci, T. Kawamura, T.R. Payne, and K. Sycara, Semantic Matching of Web Ser-

vices Capabilities, In Proceedings of the First Intl Semantic Web Conference, 2002.
29. G. Denker, L. Kagal, T. Finin, M. Paolucci and K. Sycara, Security For DAML Web Ser-

vices: Annotation and Matchmaking, In Proceedings of the Second Intl Semantic Web
Conference, 2003.

30. J. Rao. Semantic Web Service Composition via Logic-based Program Synthesis. PhD The-
sis. Norwegian University of Science and Technology. December 10, 2004.

31. CLIPS. http://www.ghg.net/clips/CLIPS.html.

A. Adi et al. (Eds.): RuleML 2005, LNCS 3791, pp. 71–83, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Reactive Rules-Based Dependency Resolution
for Monitoring Dynamic Environments

Dagan Gilat, Royi Ronen, Ron Rothblum, Guy Sharon, and Inna Skarbovsky

IBM Haifa Research Laboratory
{dagang,royi,ron,guysh,inna}@il.ibm.com

Abstract. Monitoring systems commonly use data dependencies and are very
often required to have real-time, or near real-time, capabilities. Resolution of
dependencies using a reactive rule engine is an evident choice, since it provides
inherent real-time characteristics.
We introduce the novel approach taken by Active Dependency Integration
(ADI) technology in using reactive rules for dependency resolution, i.e., for the
purpose of calculating an updated value using the value elements on which it
depends. The salient property of this approach is that it demonstrates autonomic
behavior. The set of reactive rules used for dependency resolution does not de-
pend on the model for which it provides dependency resolution. The same rules
handle every dependency model and support dynamic models, where elements
may be added or deleted, without having to change any code or rule definitions,
or stop the monitoring for manual system reconfiguration and redeployment.
The rules are implemented in AMIT, an event-driven rule engine.

1 Introduction

Dependencies of various types are common in monitoring systems. A dependency
expresses the exact way in which the value of a data element (i.e., the dependency
target) is affected by other elements (i.e., the dependency sources). For example, a
metric representing the availability of a website is a value that depends on other val-
ues, such as the availability of the site's server and communication lines. For users
who define an ontology that describes the impact of elements on other elements, the
use of dependencies is more natural and intuitive than the use of reactive rules, since
it provides a higher level of abstraction [2].

Dependencies have to be resolved in run-time. A possible mechanism for this reso-
lution is a set of reactive rules. Unlike traditional queries that return an answer only
when (and if) activated, a reactive rule functions as a watchdog that sends an alert
whenever the conditions associated with it are satisfied. Reactive rules have inherent
real-time characteristics [1], which make them a good choice for the task, since many
monitoring systems have real-time requirements [6].

Dilman and Raz [7] distinguish between two types of monitoring: statistical and
reactive. Statistical monitoring provides statistical properties of the system's behavior,
while reactive monitoring immediately reacts to conditions that develop in the sys-
tem. Reactive monitoring is therefore suitable for applications in which a timely alert
is important. Domains with a need for reactive monitoring applications include secu-
rity applications, safety applications, sensor monitoring applications with real-time
(or near real-time) requirements, and financial real-time applications [4] [6] [1].
These domains all share the need for an immediate alert in response to developments

72 Dagan Gilat et al.

in the monitored object and thus motivate the use of reactive rules for dependency
resolution. Carney et al. [6] proposed the DBMS-Active, Human-Passive (DAHP)
model for such systems. DAHP systems are database systems that do not get their
data from humans issuing transactions, but from external sources. Users do not query
data, but alerts are emitted when needed. Monitoring systems can be looked at as
DAHP systems that evaluate continuous queries. The monitored value is the query
output, actively brought to the passive user.

1.1 ADI

ADI is a language developed by IBM Research to model data dependencies between
entities. Entities can also be affected by events, which are the input to ADI models.
ADI uses AMIT—an event driven reactive rule engine—for the task of dependency
resolution. In this paper, we introduce the novel approach taken by ADI in using
AMIT for dependency resolution. The authors cover those AMIT and ADI issues that
are important for the understanding of this paper. Further details for both ADI and
AMIT are available in [2] and [1], respectively.

An ADI Model Example. This section informally describes an ADI model example.
Section 1.2 formally discusses dependency resolution. Consider a website that pro-
vides online stock trading services. The trading process is monitored. It is composed
of: Transaction tasks (buy, sell), View Portfolio, Login and Logout. The first two are
operated by a trading server and the latter two are operated by an authentication
server. These dependencies are modeled in ADI using a mandatory dependency be-
tween the services and the related servers, as illustrated in Figure 1. Login and Trans-
action tasks are crucial for the proper functioning of the site. Therefore, in the ADI
model, the site depends on them in a mandatory dependency, which means that the
site fails to function if at least one of them fails. Logout and View Portfolio are also
important, but the site can function even if at most one of them fails. Therefore, the
modeling requires one-out-of dependency, whose positive result is mandatory for the
site. The trading and authentication servers depend, in a mandatory manner, on a DB
server and on two-out-of three WASes.

Fig. 1. Fig. 2.

Reactive Rules-Based Dependency Resolution for Monitoring Dynamic Environments 73

Self-management in ADI. Intuitively, one expects that different sets of reactive rules
will be arranged and deployed for different dependency models. In the case of dy-
namic models where the topology changes, rules will have to be added or deleted
accordingly in order to comply with the new topology. For such a solution to work, it
is imperative that a mechanism for adding and deleting rules exists and that loss of
context is not implied by such changes. Change in rules may also be an expensive,
time consuming, action due to synchronization needs in the rule engine; this draw-
back can gravely harm the engine’s adequacy for real-time purposes. Monitoring
systems usually deal with massive amounts of input that can also provide information
on changes in the model topology. This input, in turn, may necessitate frequent and
expensive changes in rules. To enable the use of reactive rules for real-time or semi
real-time monitoring, we need a set of rules that will not have to be changed during
execution of the monitoring, even if the monitored model does change. Such a set of
rules will enable the autonomic management of monitoring the changing model, since
it will never have to undergo external modifications, despite changes in topology.
Moreover, this approach does not require the existence of rule modification capabili-
ties in the reactive rules engine.

In ADI, the same set of reactive rules is used for dependency resolution in any de-
pendency model, including dynamic models whose topology is not fixed. The rules
have a mechanism that imprints the initial model and runtime changes in them, in
addition to performing the dependency resolution itself. The ability to imprint every
ADI model, including runtime changes, is the key to the system's property of self
management.

1.2 Dependency Resolution

For the sake of simplicity, our discussion uses the example depicted in Figure 2,
which is simpler than the example presented in Section 1.1. The simpler model in
Figure 2 monitors the availability of a website. The target entity, named "Website"
represents the website and its state attribute expresses the state of the site's availabil-
ity. The site has five servers, where two of them are for backup purposes. Each of the
servers is represented as a source entity with a state attribute. The possible values for
state attributes are: OK, WARNING, PROBLEM, and FAIL (This restriction and
another one are discussed at the end of this section). The goal of this simple model is
to monitor the state of the "Website" entity, which depends on other values in the
model. The attribute state of "Website" must be updated according to the values in the
state attributes of its five source entities. We use the semantics of an n-out-of depend-
ency, where n=3. Using n-out-of, the state of the target entity is the worst state of the
best n source values. The n-out-of semantics are appropriate for this example since
the website is assumed to choose the three servers that have the best state out of the
available five. The website’s state of availability will be the worst state of the three
chosen servers, namely the worst out of the best three (recall that n=3). Alternatively,
n-out-of chooses the state of the nth entity under the total order {FAIL < PROBLEM
< WARNING < OK}, where n elements are counted from OK "downwards". For
example, if the states of the servers are {OK, WARNING, OK, PROBLEM, FAIL},
the website will be in the WARNING state. The resolution of the dependency is the

74 Dagan Gilat et al.

process of deriving WARNING from the multiset of states, according to the depend-
ency semantics.

Requiring that the set of possible values be a finite known set is crucial to the pro-
posed resolution algorithm. A similar restriction was proposed in the context of mem-
ory limitations for continuous queries [3]. This restriction enables a synopsis of data
from an unbounded number of dependency sources, as explained in Section 2.3. This
restriction renders our solution suitable either for dependencies with a potentially
unbounded, unknown number of sources reporting values from a finite set, or for
dependencies with a finite, known number of sources reporting any value. More
details related to this issue appear in Section 4.

1.3 Structure of this Paper

In Section 2, we show how AMIT reactive rules are used to resolve dependencies in a
dynamic model, with the input in the form of events. The monitoring system receives
events that may update the attributes of each of the sources and may influence the
topology of the model, making the model dynamic. Our main focus is on state de-
pendencies that derive the target's state from the state of its sources. Modifications
needed for the resolution of other dependencies are also discussed, with the example
of arithmetic dependencies. In Section 3 we discuss related work and Section 4 con-
cludes the paper.

2 Reactive Rules for Dependency Resolution

ADI uses AMIT as an internal component in charge of dependency resolution. ADI
informs AMIT of changes in the model topology and changes in the values of exist-
ing entities. AMIT then sends ADI events with resolved values of dependant entities.
Figure 3 depicts the relationship between AMIT and ADI. Section 2.1 gives a concise
overview of AMIT. Sections 2.2 through 2.4 delve into its use by ADI.

2.1 AMIT

The AMIT situation manager is the engine’s component in charge of detecting situa-
tions (i.e., complex events), which are essentially correlations between events. The
AMIT user, in our case ADI, defines patterns of complex events that are of interest,
and the situation manager emits an event when the pattern is detected. An operator is
defined as the type of pattern of events and the operands are the events on which the
pattern is defined. Each situation has a single operator and one or more operands.

The following are some usage examples of operators:

• Operator "All": The situation using this operator is detected when all its operands
occurred.

• Operator "Sequence": The situation using this operator is detected when all its
operands occurred in the defined order.

• Operator "At Least n": The situation using this operator is detected when at least n
instances of the operands (not necessarily different operands) occurred.

Reactive Rules-Based Dependency Resolution for Monitoring Dynamic Environments 75

The situation manger uses keys. A key defines how operand instances are parti-
tioned for the purpose of situation detection, by specifying the context of detection.
Partitioning is done on the basis of equality between attributes that participate in the
key. In the presence of a key, patterns will only be detected over instances with the
same value for attributes that participate in the key. For example, consider the defini-
tion All(e1,e2). This situation's semantic is as follows: the situation is detected when
both e1 and e2 are detected, in any order. Now, assume that e1 and e2 have both an
attribute, named a1. In the case where no key is defined for the situation, all the de-
tected instances of e1 and e2 will be considered, regardless of the value of a1 in any
of the events. However, in the presence of a key in which e1.a1 (the attribute a1 of
event e1) and e2.a1 participate, only those instances with the same value for the two
a1 attributes will be considered. An instance of e1 with a1=4 and an instance of e2
with a1=6 do not result in a situation detection in the presence of the above defined
key.

The presented set of AMIT rules uses event references. An event reference is a
mechanism that produces an event as an action triggered by the detection of another
event, with a possible condition. It resembles the ECA (event – condition – action)
model [14], where the action is an event emission. For example, if e3 references e4
under the condition e3.a1>9, then the detection of e3 with a1>9 will result in the
emission of e4, and both instances will be considered for the detection of situations.

Fig. 3. Fig. 4.

In AMIT, every situation is also an input event. Therefore, a situation can play the
role of an event in every part of the language. A comprehensive description of the
situation manager language can be found in [1]. Our proposed paradigm of depend-
ency resolution using reactive rules implemented in AMIT can be seen as composed
of three levels of AMIT rules: the sources level, the memory level, and the depend-
ency level. The following sections review these three levels, using the example de-
picted in Figure 2.

2.2 Sources Level

The sources level is responsible for reporting the creation, deletion, and change in
status of sources to the memory level. Figure 4 shows the input and output of this
level. The sources level events, i.e., the events that it uses as input, are: createSource,

76 Dagan Gilat et al.

reportSource, updateSource, and removeSource. The three uppermost tables in Fig-
ure 5 show the structure of the first three events. The event removeSource has the
same structure as createSource.

ADI sends these events to AMIT, which uses them to track the changes in both the
model's topology and in values of existing entities. Whenever a new source to a de-
pendency is created, ADI sends AMIT a createSource event. Its attribute depend-
ency_id expresses the dependency to which the new source belongs and the place
attribute expresses the location of the source in the dependency relative to other
sources. removeSource informs AMIT about a deletion of a source from a depend-
ency. reportSource is sent by ADI to report the latest value of an attribute that be-
longs to an already existing entity. A change in value always results in an event in-
forming AMIT of the change. createSource references (i.e., causes the triggering of)
an updateSource event (see Section 2.1), whose dependency_id and place attributes
have the same values as createSource.

Fig. 5. Fig. 6.

The lowermost table in Figure 5 shows the structure of the referenced update-
Source event. As a result of the reference, every createSource event is immediately
followed by an updateSource event with null values in state and previous_state at-
tributes. After createSource, ADI always sends a reportSource event with the state in
which the entity was created.

The heart of the sources level is an "All" situation over reportSource and update-
Source. This situation is immediately detected and reported when both these events
occur. The situation is keyed by two attributes, place and dependency_id. This means
that only pairs of updateSource and reportSource events that agree on the values in
the two attributes dependency_id and place will be considered for the detection of the
"All" situation. Since createSource references updateSource, the first occurrence of
reportSource that refers a certain source results in the detection of the "All" situation
over updateSource (referenced) and reportSource (occurred).

The sources level situation (i.e., the "All" situation just discussed), in what may
seem surprising, is the updateSource event itself. This is perhaps the most non-

Reactive Rules-Based Dependency Resolution for Monitoring Dynamic Environments 77

intuitive idea in the design of the rules. Up to this point in the discussion, update-
Source was an event and not a situation. As mentioned above, a situation in AMIT
can play the role of an event in any context. We take advantage of this by defining
updateSource to be a situation operand as illustrated in Figure 6. Initially, it looks as
though such a situation can never be detected, since it must first occur in order to be
detected. By referencing updateSource at the creation of the source, we enable the
first detection of the situation. When the first reportSource event occurs, it results in
a situation because an updateSource was referenced upon creation of the source.
When a reportSource event other than the first occurs, it results in a situation as well,
since the previous reportSource resulted in an updateSource situation. Section 2.3
discusses how the memory level makes use of this situation as input. The following is
the XML definition of the situation, using the situation manager language. The ele-
ments are discussed in the order (depth-first) in which they appear.

<situation name="updateSource">
 <all>
 <operandAll eventType="reportSource"/>
 <operandAll eventType="updateSource"/>
 <keyBy name="place"/>
 <keyBy name="dependency_id"/>
 </all>
 <situationAttribute attributeName="dependency_id" expression="key(dependency_id)"/>
 <situationAttribute attributeName="place" expression="reportSource.place"/>
 <situationAttribute attributeName="state" expression="reportSource.state"/>
 <situationAttribute attributeName="previous state” expression="updateSource.state"/>
</situation>

The main element, situation, has an attribute with the situation's name. Its first
child, all, means the situation operator is an "All" type. The operandAll elements
define the events that participate in the situation. Keyby elements define the keys
according to which partition of the event will take place. Only pairs that agree on the
values in both place and dependency_id attributes can result in a situation. Situation-
Attribute elements define the attributes of the situation; the expressions beside them
determine their values. The attributes must match the updateSource event structure
(Figure 5). We can see that the detected situation has a dependency_id attribute taken
from the key. The place attribute is taken from the reportSource operand, but could
have been taken from the other key or from the other operand since they all have the
exact same value. The state attribute is taken from the reportSource operand and the
previous_state attribute from the updateSource operand. Note that previous_state
stores the value that was received with the previous reportSource event. The memory
level uses updateSource as input.

Before moving on to the memory level, we briefly summarize this section. The
sources level is in charge of informing the memory level about changes in the states
of the dependency’s sources.

• reportSource events are correlated with updateSource events (or situations). Each
such correlation is an updateSource situation that refers to a specific source in
one dependency.

• Only operands that agree on dependency_id and place values are correlated.
• updateSource situation is a candidate for another correlation with the next re-

portSource event. The correlation purpose is another updateSource situation. Be-
cause the updateSource situation is needed for its own detection, it is referenced

78 Dagan Gilat et al.

by createSource (rather than detected) when the source is created. This enables
the first reportSource event to be correlated with the referenced updateSource
event, resulting in a detected (rather than referenced) updateSource situation that
will be ready to be correlated with the next reportSource event and so on and so
forth.

• The updateSource situation includes information on the current and the previous
state of the source whose change in state it represents, as well as place and de-
pendency- id information.

• In addition to being a situation, updateSource plays the role of an event when
used as an operand. The rules define it both as an event and as a situation.

The notion of an "All" situation that is its own operand appears in the memory
level as well. In both levels, it functions as a means to capture the previous state of
some part of the system. The updateSource event/situation, which ‘waits’ for a re-
portSource event to be correlated with it, contains information about the source's
current and previous states. Together with the reportSource event, the two events
allow the creation of a new situation with the updated information.

2.3 Memory Level

The memory level is in charge of the bookkeeping task for the sources of a single
dependency. The memory level is, in fact, a situation. It keeps track of the sources’
values as they get updated. Section 2.2 discusses the sources level by describing the
events and situations associated with the changes in the state of a single source, since
the key attributes dependency_id and place uniquely identify a source. We say that
the memory level is one level above the sources level, because it receives its input
events primarily from the sources level and because the situation is keyed only by the
dependency id. As a result, when the incoming events are partitioned for correlation,
they no longer need to have the same value in the place attribute; place is ignored.
Here, the partition is coarser. Events having the same dependency_id attribute are
suitable for correlation in this level, regardless of the place attribute value.

We call this level's situation memory. Dependency types that deal with states, such
as n-out-of from the example in Figure 2, all have the same format. This section dis-
cusses the format extensively. Slight modifications for other types of dependencies
are discussed in Section 2.5. The memory situation attributes also reflect the fact that
they are one level above the sources level. memory has attributes comprising
information about all the sources of a dependency. They are therefore affected by all
sources, unlike the attributes of updateSource, which refer to a single source and are
not affected by other sources. When a new dependency is created, ADI sends AMIT a
start event. Its structure is different for every dependency type. In the case of depend-
encies that need parameters, start is responsible for providing the initial parameters’
values. For example, in the model in Figure 2, the start event for the n-out-of depend-
ency has an attribute called n with the value of 3 to express that the specific instance
of this dependency type is 3-out-of, while the start event for most arithmetic depend-
encies does not have parameters. Figure 7 shows the memory event structure.

The idea of a situation that is its own operand is also used here. The memory event
will function as its own operand, bringing the previous state of part of the system as

Reactive Rules-Based Dependency Resolution for Monitoring Dynamic Environments 79

input. At the sources level, we saw that an initial reference of such a situation is re-
quired for its first detection. From the first detection onwards, the reference is no
longer needed since the first detection enables further detections. The same happens
at the memory level, where the cycle begins with a reference of memory by start. We
see that memory has an integer attribute for each of the possible states; these attrib-
utes function as counters for the number of sources in each state.

The start event triggers a memory event and sets its attribute values as defined in
Figure 7.

Fig. 7. Fig. 8.

Up to this point, there was no connection between the two levels. Now, we see that
memory is an "All" situation over updateSource from the sources level, as well as
over itself. Figure 8 illustrates the skeleton of the memory situation and its relation to
the sources level. The updateSource situations are the product of the sources level
and the input to the memory level. The following is the detailed XML definition of
the memory situation. The memory situation definition uses the "All" operator over
the discussed events, namely update and memory. For convenience, in the remainder
of the situation definition, operands are referenced as u and m respectively, which are
the values of the "as" attribute in the operandAll element.

<situation name="memory">
 <all>
 <operandAll eventType="updateSource" as="u"/>
 <operandAll eventType="memory" as="m"/>
 <keyBy name="dependency_id"/>
 </all>
 <situationAttribute attributeName="dependency_id" expression="key(dependency_id)"/>
 <situationAttribute attributeName="No_ok" expression="if (u.STATE='state_ok') then (m.No_ok+1)
 elseif (u.PREV_STATE='state_ok') then (m.No_ok-1) else m.No_ok endif"/>
 <situationAttribute attributeName="No_warning" expression="if (u.STATE='state_warning')
 then (m.No_warning+1) elseif (u.PREV_STATE='state_warning') then (m.No_warning-1)
 else m.No_warning endif"/>
 <situationAttribute attributeName="No_problem" expression="if (u.STATE='state_problem')
 then (m.No_problem+1) elseif (u.PREV_STATE='state_problem') then (m.No_problem-1)
 else m.No_problem endif"/>
 <situationAttribute attributeName="No_fail" expression="if (u.STATE='state_fail') then (m.No_fail+1)
 elseif (u.PREV_STATE='state_fail') then (m.No_fail-1) else m.No_fail endif"/>
</situation>

80 Dagan Gilat et al.

Each of the four attributes of the situation: No_ok, No_warning, No_problem and
No_fail is a counter for the number of sources for each of the four states. The follow-
ing explanation describes the consequences, in view of the four counters, of adding a
new source to a dependency. We assume that the dependency was already created and
an initial memory situation was referenced setting the four counters to zero. When a
source is added, an updateSource situation is referenced with null values for its state
and previous_state attributes. This updateSource situation is correlated with the ref-
erenced memory situation to produce a new memory situation. The counters remain
the same since we still don’t know the state of the new source. Then, the first report-
Source event related to this source is detected, producing an updateSource situation
with new values. If the reportSource event changes the source's state from null to
OK, the updateSource situation will have OK in the state attribute and null in the
previous_state attribute. The memory situation uses this event as an operand, but this
time, the No_ok attribute will be affected and will be incremented by one, to reflect
that a new source was added to the dependency in state OK. Suppose another report-
Source event occurs, changing the state of our single source from OK to PROBLEM.
The sources level produces an updateSource situation with the values PROBLEM
and OK in the state and previous_state attributes, respectively. This updateSource
situation is correlated with the latest memory situation and a new memory situation is
detected. Here, two attributes are affected: No_ok and No_problem. Because the
previous_state attribute in the updateSource situation is OK, the second 'if' condition
in the No_ok expression evaluates to true, and the value is decremented by one. The
decrement reflects that there is now one source less in state OK. A similar expression
associated with the No_problem attribute increments its value in the same way No_ok
was incremented. The increment reflects that there is now one more source in state
PROBLEM. We now return to Figure 2, where the dependency has five sources.
Whenever one of them changes, two situations are detected. At the sources level, an
updateSource situation is detected with the current and previous states. As a conse-
quence, at the memory level, a memory situation is detected with attributes that repre-
sent the updated number of sources in each of the four states.

A source is removed by a removeSource event. removeSource references a re-
portSource event with null value for its state attribute. Should another source be
created in the freed place, it will replace the removed source. In other words, the
sources level associated with a specific place in the dependency is not terminated
when the source is removed, but reused by the next source in the same place. Until
now, no reference to the dependency semantics was made, except for noting that it is
state related. The implementation of the semantics is done at the dependency level.

The following briefly summarizes the main points of the memory level.
• updateSource situations, whether referenced or detected. are correlated with

memory situations. Each such correlation is a memory situation that refers to a
single dependency.

• Operands have to have the same dependency_id in order to be correlated.
• Every memory situation is a candidate for another correlation with the next up-

dateSource situation.
• A memory situation includes attributes for the number of sources in each of the

four states. In dependencies that are not aimed at resolving a state, these attributes
will be slightly different.

Reactive Rules-Based Dependency Resolution for Monitoring Dynamic Environments 81

2.4 Dependency Level

The dependency level is in charge of deriving the final result, according to the seman-
tics of the dependency. The dependency level is one level above the memory level
and uses the memory situation, which is the memory level product, as its input. The
dependency level consists of a simple "All" situation, whose operands are the mem-
ory situation and the start event discussed in Section 2.3.

Consider the 3-out-of dependency from Figure 2. According to what we have seen
in Section 2.3, if the sources’ states are: {OK, WARNING, OK, PROBLEM, FAIL},
then the attributes No_ok, No_warning, No_problem and No_fail will have the values
2,1,1,1, respectively. We resolve the dependency by looking for the state of the third
best source. No_ok = 2, so the third best source is worse than OK. No_ok +
No_warning =3, and since 3 n, the resolved state is warning. The following is the
XML definition of the Noutof situation associated with the dependency level in the
case of n-out-of.

<situation name="Noutof">
 <all detectionMode="immediate">
 <operandAll eventType="Noutof Start" as="s" retain="true"/>
 <operandAll eventType="memory" as="m">
 <keyBy name="dependency_id"/>
 </all>
 <situationAttribute attributeName="dependency_id" expression="m.dependency_id)"/>
 <situationAttribute attributeName="STATE" expression="if ((m.No_ok-s.n)>=0) then 'state_ok'
 elseif (((m.No_ok+m.No_warning)-s.n)>=0) then 'state_warning'
 elseif (((m.No_ok+m.No_warning+m.No_problem)-s.n)>=0) then 'state_problem' else 'state_fail'
 endif"/>
</situation>

Note that the expression calculating the state attribute is the first point where the n-
out-of semantics is of importance. The situation attribute expression performs the
check to find the state of the nth best source, with respect to the n provided by the
start event. With the creation of the dependency, start is sent once to AMIT. This is
why the operand definition has a true value in retain, meaning the event is not con-
sumed and thus available for further detections of the situation. The key is depend-
ency_id, and is used to associate only corresponding operands, namely memory situa-
tions and start events that refer to the same dependency. The dependency resolution
outcome is in the state attribute of the dependency level situation. In the example
from Figure 2, this value is also the value monitored by our simple system and is
available for use. Another situation will be detected if this value is changed.

2.5 Modifications for Other Types of Dependencies

This section deals with rule modifications that are required to implement dependen-
cies other than n-out-of. Consider the ADI mandatory dependency type, where the
resolved state value is the worst state value of all the sources. Bookkeeping of the
number of sources in each state is done exactly as in n-out-of (sources and memory
levels), but the dependency level is slightly different. Its state attribute expression
checks for the first non-zero value in the memory situation state related attributes, in
the order of FAIL, PROBLEM, WARNING, and OK. The first non-zero value im-
plies the state. There are also dependency types that are not state related. One exam-
ple is sum. In analogy to the state attribute that existed in each of the sources and in

82 Dagan Gilat et al.

the target of any n-out-of dependency, the sources and target of a sum dependency all
have an attribute named "value".

The semantics simply sum up the constantly changing values of the sources. In this
case, the sources level remains almost the same, and still has to report the current and
the previous values to the memory level, as it did with states. The memory level de-
ducts the previous value and adds the current one. The dependency level is empty.
New sources are created with a zero value and then updated with their initial values.
To remove sources, their current value is set to zero. The product dependency type,
whose semantics multiply the sources’ values, functions almost the same. The differ-
ence is that in product, the memory level divides the total by the previous value and
multiplies it by the current value. Sources are created with the multiplicity-neutral
value, namely one. To remove sources, their current value is set to one.

3 Related Work
3.1 Dependency Related Work

Dependency discovery, studied in [9], involves the deduction of how elements affect
each other. In our work, we assume that dependencies are already known and the
focus is on how to use reactive rules to resolve the dependencies.

The work in [2] studies the ADI model language, how it expresses a model, its ca-
pabilities and expandability. This work provides a paradigm for the implementation
of a dependency resolution mechanism.

The same difference exists between our work and the descriptions of the Mercury
Dynamic Application Relationship Mapping [11] (which also discovers dependen-
cies), the Micromuse NetCool [12], and Managed Objects' Formula [10].

In [1], a detailed description of the AMIT event algebra and context notation is
provided, whereas this work uses that language as a tool.

3.2 Work Related to Monitoring

Communication effective monitoring is proposed in [7]. While in [7] dependency
resolution is embodied in iterative procedures, this work studies the resolution itself
and how reactive rules are used to implement it.

An ADI model can be looked upon as one or more continuous queries, of a proce-
dural nature, over an event stream. The model topology dictates the processing pro-
cedure. Continuous queries are addressed in [13], in the context of append-only data-
bases as an analogy to conventional queries on a regular database. Semantic issues
and efficiency considerations regarding continuous queries over streams are ad-
dressed in [5]. The difference between [5] and [13] on the one hand, and ADI on the
other, is that ADI-like data (i.e., dependencies) can be embodied in declarative SQL
continuous queries. Our work addresses the issue of dependency models in view of
resolution execution.

4 Conclusion
We propose a general paradigm for the implementation of dependency resolution
using reactive rules. The rules are designed so there is no need to change them even if

Reactive Rules-Based Dependency Resolution for Monitoring Dynamic Environments 83

the dependency model changes, since the model is imprinted in the rules themselves.
Three levels of data processing are used: information related to a single source in the
first level, information related to all the sources in the second level, and processing
related to the dependency semantics in the third level. AMIT rules using this ap-
proach are used by ADI for dependency resolution.

We reduced the dependency resolution problem of any model to the same fixed set
of reactive rules. This requires that appropriate rules for each dependency type exist
(i.e., one for n-out-of, one for product etc.), using the rule engine in a compact ele-
gant manner.

The proposed approach offers a solution that does not limit the number of sources
allowed for a dependency. This is made possible at the cost of restricting the possible
values of dependency sources to a finite known set of values. Allowing any value as a
source would require the number of sources to be bounded. Common monitoring
system requirements are compliant with this restriction.

References

1. A.Adi and O. Etzion, "The situation manger rule language", RuleML, Sardinia, Italy. 2002
pp.36-57.

2. A. Adi, O. Etzion, D. Gilat, and G. Sharon, “Inference of Reactive Rules from Dependency
Models”, LNCS, Springer-Verlag, Heidelberg, November 2003, Vol. 2876, pp. 49-64.

3. A. Arasu, B. Babcock, S. Babu, J. McAlister and J. Widom, "Characterizing Memory Re-
quirements for Queries over Continuous Data Streams", TODS, 2004, vol. 29, pp. 162-194.

4. B. Babcock, S. Babu, M. Datar, R. Motwani and J. Widom, "Models and Issues in Data
Stream Systems", PODS, Madison, Wisconsin, 2002, pp. 221-232.

5. S. Babu and J. Widom, "Continuous Queries over Data Streams, SIGMOD Record, 2001,
vol. 30 (3), pp. 109-120.

6. D. Carney, U. Cetinternel, M. Cheriack, C Convey, S. Lee, G. Seidman, M. Stonebraker,
N. Tatbul and S. Zodnik. "Monitoring streams – a new class of data management applica-
tions", Brown Computer Science Technical Report, TR-CS-02-04.

7. M. Dilman and D. Raz, "Efficient Reactive Monitoring", INFOCOM, Anchorage, Alaska,
2001, pp. 1012-1019.

8. A. Kochut and G. Kar, "Managing Virtual Storage Systems: An Approach Using Depend-
ency Analysis", Integrated Network Management Colorado Springs, Colorado, 2003, pp.
593-604.

9. Managed Objetcs: http://www.managedobjects.com
10. Mercury: http://www.mercury.com
11. Micromuse: http://www.micromuse.com
12. D. Terry, D. Goldberg, D. Nichols and Brian Oki, "Continuous Queries over Append Only

Databases", SIGMOD Int'l Conference on Management of Data, San Diego, Califor-
nia,1992, pp. 321-330.

13. J. Widom and S. Ceri, Active Database Systems: Triggers and Rules for Advanced Data-
base Processing. Morgan Kaufmann, San Francisco, California,1996.

A. Adi et al. (Eds.): RuleML 2005, LNCS 3791, pp. 84–97, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Towards Discovery of Frequent Patterns
in Description Logics with Rules

Joanna Józefowska, Agnieszka awrynowicz, and Tomasz ukaszewski

Institute of Computing Science, Pozna University of Technology
ul. Piotrowo 3a, 60–965 Pozna , Poland

{joanna.jozefowska,agnieszka.lawrynowicz,tomasz.lukaszewski}
@cs.put.poznan.pl

http://www.cs.put.poznan.pl

Abstract. This paper follows the research direction that has received a growing
interest recently, namely application of knowledge discovery methods to com-
plex data representations. Among others, there have been methods proposed for
learning in expressive, hybrid languages, combining relational component with
terminological (description logics) component. In this paper we present a novel
approach to frequent pattern discovery over the knowledge base represented in
such a language, the combination of the basic subset of description logics with
DL-safe rules, that can be seen as a subset of Semantic Web Rule Language.
Frequent patterns in our approach are represented as conjunctive DL-safe que-
ries over the hybrid knowledge base. We present also an illustrative example of
our method based on the financial dataset.

1 Introduction
Discovery of frequent patterns has been investigated in many data mining settings and
is now a well-researched area. An input to the existing data mining algorithms is usu-
ally a single table (so-called attribute-value representation). Recently there has been
growing interest in applying knowledge discovery methods to more complex data
representations. A good example of such approach is relational data mining (RDM)
(Džeroski & Lavra , 2001) from the field of inductive logic programming – ILP
(Nienhuys-Cheng & de Wolf, 1997). RDM methods are designed to operate on multi-
ple, linked tables to discover patterns involving multiple relations from a relational
database. These methods have two significant advantages over the classical, proposi-
tional ones. Firstly, they operate on the original, not preprocessed relational datasets
decreasing the risk of information loss. Secondly, as they use the formalisms of logic
programming, they posses the ability to include background knowledge specific to the
given domain into the knowledge discovery process. Background knowledge may be
expressed for example in the form of rules. Because of the present efforts being made
to move to meaningful systems, thus from databases to knowledge bases it may seem
quite straightforward to transform the existing algorithms so that they were able to
deal with data represented by ontologies. Exploiting ontologies as a kind of back-
ground knowledge can potentially improve the process and the results of knowledge
discovery. It can be useful in driving the search process in the space of patterns and in
the in-depth interpretation of discovered patterns. We refer particularly to the emerg-
ing Semantic Web (Berners-Lee et al, 2001), and the languages developed to
represent the knowledge in Semantic Web (e.g. Web Ontology Language - OWL,

Towards Discovery of Frequent Patterns in Description Logics with Rules 85

McGuinness & van Harmelen, 2004) that are based on the well-researched knowledge
representation formalisms of Description Logic (DL). Although the expressive power
of DL in certain aspects goes far beyond the expressive power of logic programs,
there exist relationships that can be easily expressed in a logic program (e.g. in the
form of rules) but cannot be in turn expressed in DL. Thus the natural step was to
extend the expressive abilities of ontologies by adding rules on top of ontologies that
materialized in Semantic Web Rule Language – SWRL (Horrocks et al, 2004).
Whereas itemsets are the language of patterns in traditional frequent pattern mining
setting, queries over DATALOG bases are the language of patterns in RDM setting,
in our setting we propose the language of conjunctive queries (see 3.2) over the ontol-
ogy expressed in the subset of SWRL. Moreover we use the intensional part of the
ontology as background knowledge for the knowledge discovery task. In the scope of
this paper and as a starting point of our investigations we consider the basic subset of
OWL, OWL-DLP, known also as Description Logic Programs or OWL-Light, de-
scribed in (Grosof et al, 2003) as an expressive intersection of the Semantic Web
approaches to rules (RuleML Logic Programs) and ontologies (OWL-DL). As we are
going to extent our work to more expressive OWL subsets, we describe our frequent
pattern discovery task in the wider framework of the presented very recently (Motik et
al, 2004) query answering mechanism for OWL-DL with function-free Horn rules,
where rules are restricted to so-called DL-safe ones (see 3.1) to preserve the decida-
bility of such a combination.

The rest of this paper is organized as follows. In section 2 we introduce our learn-
ing task. In section 3 we introduce description logic that is the formalism of
OWL-DLP language, DL-safe rules and query answering for OWL with rules and we
point out the representation formalisms of our patterns, background knowledge and
instances. In section 4 we present our approach to discovery of frequent patterns. In
section 5 we present the case study of our method based on experimental dataset. In
Section 6 we compare our approach to related work. Section 7 concludes the paper.

2 Frequent Pattern Discovery Task

With respect to the general formulation of the frequent pattern discovery problem by
Mannila and Toivonen (Mannila & Toivonen, 1997) and its further version for RDM
(Dehaspe & Toivonen, 1999), we define our task of frequent pattern discovery over
the knowledge base in OWL-DLP as:

Definition 1. Given
– a knowledge base in OWL-DLP with DL-safe rules KB,
– a set of patterns in the language L of queries Q that all contain a reference con-

cept Cref,
– a minimum support treshold minsup specified by the user

and assuming that queries with support s are frequent in KB given Cref, denoted as
support(Cref, Q, KB), if s minsup, the task of frequent pattern discovery is to find
the set F of frequent queries.

In this definition, similarly to the RDM formulation, there is the Cref parameter
added to the frequent pattern discovery task which determines what is counted. A
support of the query in our setting is defined as follows.

86 Joanna Józefowska, Agnieszka awrynowicz, and Tomasz ukaszewski

Definition 2. A support of the query Q with respect to the knowledge base KB is de-
fined as the ratio between the number of instances of the Cref concept that satisfy the
query Q and the total number of instances of the Cref concept (obtained as a result of
submitting a trivial query denoted Qref):

|KB) ,Q,Canswerset(|
|KB) Q, ,Canswerset(|

 KB) Q, ,support(C
refref

ref
ref =

3 The Data Mining Setting

In our approach we assume that the knowledge base KB contains the terminological
(TBox) and the assertional (ABox) part where the latter one is consistent with the for-
mer one (quite probably the terminological part was learnt from the assertional part or
it was created manually). Thus we do not assume terminology learning from
interpretations. Moreover we assume the presence of rules in our KB that generally
can describe the relations impossible to be described by DL alone. In the case of our
current setting, restricted to OWL-DLP, it should be noted however that OWL-DLP
rules are expressible in DL. Our goal is to find frequent patterns in the form of con-
junctive queries over KB where the search for patterns is ontology-guided.

In the following subsections we would like to describe in more detail the represen-
tation formalisms of patterns, knowledge base and instances. First, we are going to
introduce the basic notions: the subset of DL of OWL-DLP, DL-safe rules and query
answering for conjunctive queries.

3.1 Preliminaries

OWL-DLP is the Horn fragment of OWL-DL i.e. we can say that OWL-DL statement
is in DLP if it can be written, semantically equivalently, as a set of Horn clauses in
first-order logic. We direct the reader to (Grosof et al, 2003) for more details about
the bidirectional translation of premises and inferences from/to the OWL-DLP to/from
Logic Programs. OWL-DLP has the desired property of polynomial data complexity
and exponential time combined complexity. Referring to the practical definition from
(Hitzler et al, 2005) that an OWL-DL statement is in OWL-DLP if and only if some
given transformation algorithm can rewrite it as a semantically equivalent Horn
clause in first-order logic and following their reference implementation KAON21 we
define the OWL-DLP syntactic fragment used in our current work as follows (where
a, b, ai, oi stand for individuals, C stands for a concept name, and R, Q, Ri, Qi,j stand
for role names).
• ABox:

C (a) (indiv. assertion)
R (a, b) (property assertion)
a =b (indiv. equivalence)

1 http://kaon2.semanticweb.org

Towards Discovery of Frequent Patterns in Description Logics with Rules 87

• Property Characteristics:
R ≡ Q (equivalence)
R � Q (subproperty)

� � ∀R.C (C �= ⊥) (domain)

� � ∀R ¯.C (C �= ⊥) (range)

R ≡ Q¯ (inverse)
R ≡ R ¯ (symmetry)
� � ≤1R (functionality)

� � ≤1R ¯ (inverseFunctionality)

• TBox: expressions of the form:
∃Q)(

1,1
− …∃Q)(

,1 1

−
m .Left1�…� ∃Q)(

1,
−

k …∃Q)(
,
−

kmk .Leftk � ∀R)(
1

− …∀R)(−
n .Right

where Leftj can be of the forms C, {o1, . . . , on}, ⊥ or �, and Right can be of

the forms C, �, ⊥ or {o}. The superscript)(− means that an inverse symbol may

occur where indicated.

For rules, we use the following definitions. Given

− NP: a set of predicate symbols where each symbol is either a concept name or a
role name,

− T : a set of terms where a term is either a constant (denoted by a, b, c) or a variable
(denoted by x, y, z)

− A: a set of atoms having the form P(s1, . . . , sn), where P is a predicate symbol and
si are terms

a rule has the form
H ← B1,…, Bn

where H and Bi are atoms and H is called the rule head, and the set of all Bi is called
the rule body. The rule H ← B1,…, Bn is equivalent to the clause H∨¬B1∨…∨ ¬Bn. A
program P is a finite set of rules. Moreover for the scope of our work we restrict the
atoms of rules to the concepts and roles existing in the terminology (that is to so-
called DL-atoms) and equality and inequality statements, except those, implicitly
added to rules to preserve DL-safety as introduced next. Following the work of (Mo-
tik, Sattler and Studer, 2004) where the notion of DL-safety and the reasoning algo-
rithms have been introduced, we define DL-safe rules as follows.

Definition 2. (DL-safe rules) Let KB-DL be a description logics knowledge base,
and let NP be a set of predicate symbols where each symbol is either a concept name
or a role name. A rule r is called DL-safe if each variable in r occurs in a
non-DL-atom in the rule body. A program P is DL-safe if all its rules are DL-safe.

The semantics of the combined knowledge base (KB-DL, P) is given by transla-
tion into first-order logic as π(KB-DL)∪P. The main inference in (KB-DL, P) is
query answering, i.e. deciding whether π(KB-DL)∪P |= α for a ground atom α.

88 Joanna Józefowska, Agnieszka awrynowicz, and Tomasz ukaszewski

For the details of the transformation π we refer the reader to the (Motik, Sattler and
Studer, 2004). We are going instead to explain some issues. DL-safety is a notion
similar to the safety in DATALOG where the rule is called safe when each variable
occurs in a positive atom in the body which causes it to be bound to constants present
in the database. DL-safety works similarly – makes sure that each variable is bound
only to individuals present in the ABox. The rule can be made DL-safe by adding
special non-DL-literals in the form O(x) where x is a variable and by adding a fact
O(a) for each individual a, which can be read as adding the phrase “where the iden-
tity of all objects is known” to the meaning of the rule. For example the rule:

ForLoanPermanentOrderPayment (x) ← Payment(x), paidFor(x, z), Loan(z),
orderedFor(y, z), PermanentOrder(y), O(x), O(y), O(z)

is DL-safe.

3.2 Representation Formalisms for Frequent Pattern Discovery Task

In this subsection we define the representation formalism for our task of frequent
pattern discovery. Background knowledge in our approach is represented as an
OWL-DLP KB TBox with DL-safe rules. Instances in our approach are assertions in
ABox. Frequent patterns that we look for have the form of the conjunctive DL-safe
queries whose answer set contains individuals of the Cref concept. In our work we
adapt the definition of conjunctive query from (Hustadt, Motik and Sattler, 2004) to
our restricted subsets of the languages of the KB.

Definition 3. Let KB be an OWL-DLP with DL-safe rules knowledge base, and let
x1,. . .,xn and y1, . . . ,ym be sets of distinguished and non-distinguished variables, de-
noted as x and y, respectively. A conjunctive query over KB, written as Q(x, y), is a
conjunction of DL-atoms of the form A(s) or R(s, t) for R an atomic role, and s and t
individuals from KB, distinguished or non-distinguished variables. The basic infer-
ences are:

− Query answering. An answer of a query Q(x, y) w.r.t. KB is an assignment θ of
individuals to distinguished variables, such that π(KB) |= ∃y : Q(xθ, y),

− Query containment. A query Q2(x, y1) is contained in a query Q1(x, y2) w.r.t. KB
if π(KB) |= ∀x : [∃y2 : Q2(x, y2) → ∃y1 : Q1(x, y1)].

For the sake of clarity we will further use the following notation for queries:
q(key):-Cref(key), 1,..., n

where q(key) denotes that key is the only distinguished one of query variables and
1,..., n represent DL-atoms of the query.

With regard to our definition of frequent pattern discovery we look for the patterns
containing the Cref concept. We call them K-queries.

Definition 4. Given the Cref concept A, the K-query is the conjunctive query that con-
tains, among other atoms, the atom of the form either A(key) or C(key) in the body (in
the latter case we assume having in the terminological part of the KB explicitly
stated that C � A) and where variable key is the distinguished variable.

Towards Discovery of Frequent Patterns in Description Logics with Rules 89

A trivial pattern is the query of the form: q(key):-Cref (key). Moreover, we assume
our queries to have linked-ness property (thus having all of its variables linked), simi-
larly as it is defined in (Helft, 1987), and we assume all variables to be linked to the
variable appearing in the literal with the Cref concept. For example, for the Client
being the Cref concept the following K-query can be imagined:

q(key) :- Client(key), isOwnerOf(key, x), Account(x), hasLoan(x, y), Loan(y),
 O(key), O(x), O(y)

We assume all the queries to be DL-safe and will not write in further examples
the additional atoms of the form O(x).

4 The Levelwise Algorithm
The majority of existing approaches for frequent pattern mining adopts the levelwise
method (Mannila&Toivonen, 1997) known from the APRIORI algorithm (Agrawal et
al, 1996), where the space of patterns is searched one level at a time starting from the
most general patterns. The pattern space is a lattice spanned by a specialization rela-
tion between patterns, where p1 p2 denotes that pattern p1 is more general than
pattern p2. The method iterates between the phase of candidate generation, where the
lattice structure is used for pruning non-frequent patterns I from the given level, and
the phase of candidate evaluation where support values of candidates are computed
with respect to the database and the frequent patterns F are found. The lattice struc-
ture based on the specialization relation permits the algorithm to run intelligently
across the space of patterns which in the other case would be very huge. The main
algorithm of frequent pattern discovery is shown in Table 1.

Table 1. Main algorithm

mineFrequentPatterns(KB, Cref, minsup)
1. l ← 1;
2. F ← Ø;
3. Ql ← Q(Cref);
4. wwhile Ql not empty do
5. Fl ← evaluateCandidates(KB, Cref, minsup, Ql)
6. F ← F ∪Fl;
7. Ql+1 ← generateCandidates(KB, Fl)
8. l ← l + 1;
9. eendwhile

10. rreturn F

In our current approach the specialization relation between patterns is based on the
query support. The query support forms the quasi-order for K-queries. It follows
from the definition of an answer (see: Definition 3) that more general query contains
more answers in the answer set than less general query, where the answer set is de-
fined as follows.

Definition 5. The answer set of K-query Q over the KB, denoted as answerset (Cref,
Q,KB), contains all the answers to Q w.r.t. KB.

90 Joanna Józefowska, Agnieszka awrynowicz, and Tomasz ukaszewski

The approach discussed here can be extended to checking the query containment
(see: Definition 3) during the pattern generation phase by using the generality notion
presented below.
Definition 6. Given two K-queries Q1 and Q2 to the knowledge base KB we say that

Q1 is at least as general as Q2 under query containment, Q2 Q1, iff Q2 is contained
in a query Q1.

According to the definition of the query support we can say that the query con-
tainment is monotonic w.r.t. support in the case of queries with the same sets of dis-
tinguished variables.

As the evaluation of a candidate pattern Q is based on the computation of the pat-
tern support w.r.t. knowledge base KB, it in turn boils down in our approach to
query answering where the queries have the form of K-queries. The quasi-ordered set

(L,), where L is the language of K-queries, can be searched by refinement opera-
tors where a refinement operator is defined by (Nienhuys-Cheng & deWolf, 1997) as
follows.

Definition 7. In a quasi-ordered set(L,), a downward (resp. upward) refinement

operator is a mapping ρ (resp. δ) from L to 2L
 such that ∀P ∈ L ρ(P) ⊆ {Q ∈ L |

P Q} (resp. δ(P) ⊆ (Q ∈ L | Q P}).
For the task of frequent pattern discovery, downward refinement operators are

more interesting than upward refinement operators. It is because the main algorithm
assumes searching the pattern space levelwise from the patterns more general to the
less general ones where the less general patterns are generated only from the patterns
found frequent in the previous level. This approach helps to prune infrequent patterns
found on each level and drive the search into more interesting directions. Thus we
concentrate ourselves on downward refinement operators. Additionally to the gener-
alization relation, several kinds of biases are also usually used to limit the search
space where one of the most natural ones is the pattern language bias which defines
syntactic constraints on the patterns to be found. Such restrictions on the search space
not only limit the patterns to be investigated but also ensure that only well-formed
ones are investigated. In our work we benefit from the background knowledge, in the
form of an ontology, to limit our patterns. Well-formed patterns in our approach fol-
low the restrictions imposed by our KB e.g. we can only add a literal to our query if
its relationships with the literals already added to this query are logically consistent
with the relationships existing in our KB.

In (Lisi & Malerba, 2004), Object Identity bias is imposed on the KB that states
that in a formula, terms denoted with different symbols must be distinct, i.e. represent
different entities of the domain. As shown in (Lisi, Ferilli, and Fanizzi 2002) for the
case of DATALOG queries, this bias can be the starting point for the definition of the
quasi-ordering for constrained DATALOG clauses and as such can be more suitable
for the purposes of frequent pattern discovery. Following their investigations we ex-
plicitly impose on our KB the corresponding bias of Unique Names Assumption
(UNA) which is not assumed as default in the KAON2 framework and we assume
that two differently named variables are distinct.

Towards Discovery of Frequent Patterns in Description Logics with Rules 91

The outline of candidate generation algorithm is presented in Table 2.

Table 2. Candidate generation algorithm

generateCandidates(KB, Fl)
1. Ql+1 ← Ø;
2. fforeach pattern P ∈ Fl do
3. P’ ← refine(P)
4. Ql+1 ← Ql+1 ∪ P’
5. eendforeach
6. rreturn Ql+1

Intuitively, with regard to the language of patterns, we can expect that the query Q1
can be more specific than query Q2 if Q1 contains in its body literals not contained in
Q2 or Q1 contains in its body literals more specific (w.r.t. to the KB) on the same
variables than Q2. Thus we define the refinement operator for our task as follows.

Definition 8. Let Q be the conjunctive DL-safe query in the form of K-query. A
downward refinement operator ρ for these conjunctive queries over a knowledge base
KB is defined by the following rules:
 [Is-a-class] Replace literal’s class by its explicitly asserted in KB subclass.
 [Is-a-property] Replace literal’s property by its explicitly asserted in KB sub-

property.
 [Lit-property] Add a literal representing one of the properties of literals’ classes

unless such property already exists as a literal in the query and is functional and
add a class literal of the variable already introduced in property literal for vari-
ables in property’s domain or range.

The refinement rules are applied with checking if a new refinement doesn’t cause
redundancies or inconsistencies in a variable description in a query w.r.t. restrictions
such as property functionality or inverse. Below the example application of refine-
ment rules are presented for the ontology described in section 5.1.

Query:
q(key):-isCreditCardOf(key, x), Client(x), Gold(key)

Refinements:
q(key):-isCreditCardOf(key, x), Woman(x), Gold(key)
q(key):-isCreditCardOf(key, x), Man(x), Gold(key)
q(key):-isCreditCardOf(key, x), livesIn(x, y), Region(y), Client(x), Gold(key)
q(key):-isCreditCardOf(key, x), hasSexValue(x, y), SexValue(y), Client(x), Gold(key)
q(key):-isCreditCardOf(key, x), isUserOf(x, y), Account(y), Client(x), Gold(key)
q(key):-isCreditCardOf(key, x), hasAgeValue(x, y), AgeValue(y), Client(x), Gold(key)
q(key):-isCreditCardOf(key, x), isOwnerOf(x, y), Account(y), Client(x), Gold(key)

From patterns to association rules. From the discovered frequent patterns the asso-
ciation rules can be generated. Talking about the association rules in our setting we
have in mind the semantics from RDM of a query extension (Dehaspe & Toivonen,
1999).

92 Joanna Józefowska, Agnieszka awrynowicz, and Tomasz ukaszewski

Definition 9. Let P, Q ∈ L be such patterns that P ⊆ Q. An association rule is an
implication of the form Q → P (s, c), where s is rule support and c is rule confidence.
The support s of the given association rule is the support of P and the confidence c is
the probability that the consequent P occurs in the dataset when the antecedent Q
occurs in the dataset.

Notice that the confidence of the association rule is also computed by means of the
support.

5 Case Study

While selecting the dataset for illustrating our approach we faced the problem of a
quite few ontologies with assertional component available whereas it is not difficult to
find ontologies with only the terminological component available. As we address the
problem of finding regularities in the dataset with help of a background knowledge in
the form of an ontology we need a complete knowledge base. Thus we decided to use
the existing, known from the PKDD’99 Discovery Challenge, financial dataset and on
the basis of the relational schema and problem description, we created a simple ontol-
ogy. Then we imported the text files into the relational database and we preprocessed
the interesting for our current experiment part of the database into the instances of the
ontology.

5.1 Financial Dataset

The financial dataset domain describes a bank that offers services (like managing of
accounts, offering loans) to individual clients. The data describes the accounts of bank
clients, the loans granted, the credit cards issued, etc. One client can have more ac-
counts and more clients can manipulate with a single account. To an account more
credit cards can be issued, but at most one loan can be granted. Also some additional
demographic data about clients is publicly available like the age, sex or address.

Fig. 1. A part of the financial ontology

In Figure 1, basic part of our ontology is presented that was created on the basis of
the PKDD’99 financial dataset and that we used for the experiment described in this
section (visualized by Protégé Ontoviz plugin). The concepts presented in Figure 1

Towards Discovery of Frequent Patterns in Description Logics with Rules 93

have the subconcepts that are presented for the sake of clarity in Table 3. The values
of the client’s age attribute were divided into the six ranges given in the table.

Table 3. Ontology concepts details

Concepts Subconcepts
AgeValue Below18, From18To25, From25To35, From35To50,

From50To65, Above65
Client Man, Woman
CreditCard Classic, Gold, Junior
Loan Finished, Running
 Finished NoProblemsFinishedLoan, NotPaidFinishedLoan
 Running DebtRunningLoan, OKRunningLoan
LoanStatusValue OKStatus, ProblemStatus
Region CentralBohemia, EastBohemia, NorthBohemia, SouthBo-

hemia, WestBohemia, Prague, NorthMoravia, SouthMora-
via

SexValue FemaleSex, MaleSex
StatementIssuanceFrequencyValue AfterTransaction, Monthly, Weekly

Our ontology is in the OWL-DLP fragment. The part of the ontology used for the
experiment contains 41 classes, 12 properties and 11 464 instances in total.

5.2 Experimental Results

We performed a preliminary descriptive analysis of the gold credit card holders. For
this preliminary experiment we haven’t used any pruning strategy that could benefit
for example from the query containment notion. Thus we generated every possible
pattern. We searched for the frequent patterns containing the reference concept in the
form of Gold(key).

As an underlying query answering engine for our experiments we used KAON2 li-
brary. Our application is written in Java. We decided to use the support threshold of
20% and to perform computation until 8th level of depth, because it was the greatest
level where the computation took reasonable amount of time. Below the quantitative
results of the experiment are presented.

Table 4. Quantitative results of the experiment on gold credit card owners

Level No. No. of candidates No. of patterns
1 1 1
2 1 1
3 7 6
4 43 27
5 257 124
6 1338 480
7 5898 1522
8 20262 3849

The study revealed some interesting characteristics, for example the overrepresen-
tation of the region North Moravia within gold credit card holders and overrepresenta-
tion of men. Next, what could be expected, it reported the overrepresentation of the

94 Joanna Józefowska, Agnieszka awrynowicz, and Tomasz ukaszewski

clients at age 35-50 and 50-65 years in this group and monthly statement issuance
frequency. Example pattern found at the 8th level of depth is presented below:

q(Key):-
 hasCreditCard(1_X1,Key), hasSexValue(1_X1,2_X2), MaleSex(2_X2)
 hasAgeValue(1_X1,4_X3), From50To65(4_X3), isOwnerOf(1_X1,5_X3)
 hasOwner(5_X3,1_X1), Account(5_X3), livesIn(1_X1,6_X3),
 Region(6_X3), Client(1_X1), Gold(Key)

where the variables have the prefix of the level on which they were added. For exam-
ple “4_X3” denotes that that the given variable was added to the pattern at the fourth
level during the pattern discovery process. The pattern describes “the client with the
male sex and the age between 50-65 years who has an account and the gold credit
card”. The pattern was found with the support 21,59%.

The example association rules that can be generated from the pattern presented
above are presented below using the semantics of the query extension (see: Defini-
tion 9):

hasCreditCard(1_X1,Key), hasAgeValue(1_X1,4_X3), From50To65(4_X3),
isOwnerOf(1_X1,5_X3), hasOwner(5_X3,1_X1), Account(5_X3), livesIn(1_X1, 6_X3),
Region(6_X3), Client(1_X1), Gold(Key)

 hasSexValue(1_X1,2_X2), MaleSex(2_X2) (21,59%, 65,51%)
hasCreditCard(1_X1,Key), hasSexValue(1_X1,2_X2), MaleSex(2_X2),

isOwnerOf(1_X1,5_X3), hasOwner(5_X3,1_X1), Account(5_X3), livesIn(1_X1, 6_X3),
Region(6_X3), Client(1_X1), Gold(Key)

 hasAgeValue(1_X1,4_X3), From50To65(4_X3) (21,59%, 35,84%)

Discussion. As can be seen in Table 4, applying a straightforward approach for the
candidate generation leads to large increase of the number of candidates from level to
level. Applying such an approach can cause that we result with the set of semantically
equivalent and redundant queries. Thus a mechanism during candidate generation is
desirable that performs a check for generated specializations to detect and prune such
redundancies. Although there exist approaches that use pruning strategy not based on
the background knowledge in the form of the intensional part of KB, we do not want
to apply such a pruning strategy, because it can mislead the search process.

We did also some experimental work with candidate pruning strategy based on
query containment. Our idea was similar to the technique described in (Dehaspe &
Toivonen, 1999). Each generated candidate, before being added to the candidates list,
was examined whether it is not contained in any infrequent query or whether queries
generated so far and given candidate are mutually inequivalent. This technique can
potentially eliminate huge number of redundant patterns. For example, at the 4th level
of the experiment we obtained 36 instead of 43 candidates and at the 5th level – 98
instead of 257 candidates. However, our experiment confirmed, what was also raised
in (Dehaspe & Toivonen, 1999), that such a method is very time consuming.

We are currently working on further qualitative and quantitative results on the fi-
nancial ontology. The next step of our research that we are currently working on,
investigates more efficient pattern generation and pattern pruning strategies. Our

Towards Discovery of Frequent Patterns in Description Logics with Rules 95

preprocessed knowledge base is published online2 and can serve as a benchmark for
further research.

6 Related Work
It should be noted first that to the best of our knowledge our approach is the first at-
tempt so far to define a task of mining frequent patterns represented as conjunctive
queries over description logic knowledge base and where the terminological part of
the knowledge base is taken into account as a background knowledge (despite of
SPADA described later in this section). The closest work to ours are the methods from
RDM, and we are going to mention WARMR (Dehaspe & Toivonen, 1999) as the best
known example and the system SPADA described in (Lisi & Malerba, 2004). As
WARMR during the candidate generation phase uses the syntactic notion of
θ-subsumption as a generality relation and furthermore it doesn’t take the knowledge
base into account it couldn’t detect that having given two following patterns
(DATALOG queries) Q1 and Q2
?- account(A), hasLoan(A,B), loan(B)
?- account(A), hasLoan(A,B), runningLoan(B)
Q1 is more general than Q2. WARMR generates patterns, by adding atoms from the set
of atoms specified as valid and thus discovers the patterns like the following:
?- account(A), hasLoan(A,B), loan(B)
?- account(A), hasLoan(A,B), loan(B), runningLoan(B)
To discover semantic redundancies semantic generality relation should be adopted
instead of a syntactic one. Very recently (De Raedt & Ramon, 2004) have introduced
various types of condensed representations for avoiding redundancies in patterns in
frequent DATALOG queries mining task. Still mining frequent DATALOG queries is
a different class of problems that those that we would like to aim at. In our case we
assume mining frequent patterns in the description logics knowledge bases and al-
though we start the investigation from very restricted fragment of OWL, OWL-DLP,
we are going to extend it to more expressive languages.

The system SPADA is the only system to our knowledge that explicitly assumes
frequent pattern discovery in combined description logics and relational knowledge
base. It aims at association rule discovery in multiple levels of description granularity
and relies on the hybrid language AL-log (Donini et al, 1998) which allows a treat-
ment of both the relational and structural features of data. However the current ver-
sion of SPADA admits only ALC primitive concepts in the structural knowledge
(i.e. taxonomies) whereas roles and complex concepts have been disregarded. And
most importantly the task of frequent pattern discovery is formulated in such a way
that the patterns that can be found contain concepts only from the same level of a
taxonomy. For example assuming that {Client, Loan, Account} are the con-
cepts at the same level of taxonomy and {FemaleClient, MaleClient, Run-
ningLoan} at the next level of a taxonomy. In SPADA the following patterns (con-
strained DATALOG clauses) can be obtained:

2 http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm

96 Joanna Józefowska, Agnieszka awrynowicz, and Tomasz ukaszewski

Q1 =q(X) ← hasLoan(X,Y), hasOwner (X,Z)
 & X:Account, Y:Loan, Z:Client
Q2 =q(X) ← hasLoan(X,Y), hasOwner (X,Z)
 & X:Account, Y:RunningLoan, Z:FemaleClient
but not the query

Q3 =q(X) ← hasLoan(X,Y), hasOwner (X,Z)
 & X:Account, Y:RunningLoan, Z:Client

unless some concepts are replicated in some, lower levels of a taxonomy which in
turn causes redundancies.

7 Conclusion and Future Work

In this work we present a new setting of frequent pattern discovery that we believe is
very promising. In particular it concerns frequent pattern discovery in description
logic knowledge bases assertional parts, taking as a background knowledge descrip-
tion logics terminological part, where the discovered patterns have the form of con-
junctive queries formed by the conjunction of DL-atoms. It has several advantages.
First of all, it is according to the best of our knowledge the first attempt so far to de-
fine a task of frequent pattern discovery in such a knowledge base, combining DL
with rules. The terminological part of an ontology can serve as a natural bias for
structuring the search space of patterns. Moreover, the terminology can be used to
explain in more depth the results of knowledge discovery. Furthermore the discovered
patterns can be processed to become association rules in the knowledge base, where
the relationships discovered hadn’t been already captured by existing ontology. How-
ever, although we present and discuss the subsequent steps of such an approach, we
treat it rather as a proof-of-concept method and a starting point of our investigations.
In particular we do not investigate deeply the properties of our refinement operator
and we treat the very basic subset of DL. In the next step we are going to carry out an
extensive research concerning the properties of refinement operators for conjunctive
queries over a knowledge base represented in different DLs with rules, especially in
the light of properties of ideal refinement operators. We are currently investigating
different optimization techniques for candidate generation and candidate pruning,
especially those introduced for RDM methods. In the near future we are also going to
extend our system to association rules generation from the discovered patterns.

Acknowledgments

Work partially supported by Polish Ministry of Scientific Research and Information
Technology (under grant number KBN 3T11F 025 28).

References

1. Agrawal, R. Mannila, H., Srikant, R., Toivonen, H. and Verkamo, A. I., Fast discovery of
association rules. Advances in Knowledge Discovery and Data Mining. AAAI Press,
Menlo Park, CA, pp. 307 – 328, (1996)

Towards Discovery of Frequent Patterns in Description Logics with Rules 97

2. Berners-Lee T., Hendler J., and Lassila O., The Semantic Web. Scientific American,
284(5):34-43, (2001)

3. Dehaspe, L., Toivonen, H.: Discovery of frequent Datalog patterns. Data Mining and
Knowledge Discovery, 3(1): 7 - 36, (1999)

4. De Raedt L., and J. Ramon, Condensed representations for Inductive Logic Programming,
Principles of Knowledge Representation and Reasoning: Proceedings of the Ninth Interna-
tional Conference (KR2004) (Dubois, D. and Welty C., eds.), pp. 438-446, (2004)

5. Donini, F., Lenzerini, M., Nardi, D., & Schaerf, A., AL-log: Integrating datalog and de-
scription logics, Journal of Intelligent Information Systems, 10:3, 227–252, (1998)

6. Džeroski S., Lavra N., (Eds.), Relational data mining. Springer, (2001)
7. Grosof B. N., Horrocks I., Volz R., and S. Decker. Description Logic Programs: Combin-

ing Logic Programs with Description Logic. In Proc. of the Twelfth Int’l World Wide Web
Conf. (WWW 2003), pages 48–57. ACM, (2003)

8. Helft, N. Inductive generalization: A logical framework. In I. Bratko, & N. Lavra (Eds.),
Progress in Machine Learning-Proceedings of EWSL87: 2nd European Working Session
on Learning (pp. 149–157), Wilmslow, U.K.: Sigma Press, (1987)

9. Hitzler P., Studer R., and Y. Sure, Description Logic Programs: A Practical Choice For the
Modelling of Ontologies. In: Proceedings of the 1st Workshop on Formal Ontologies meet
Meet Industry, FOMI'05, Verona, Italy, (2005)

10. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M., SWRL: A
Semantic Web Rule Language Combining OWL and RuleML, W3C Member Submission
21 May 2004, http://www.w3.org/Submission/SWRL/

11. Hustadt U., Motik B. and U. Sattler. Reasoning for Description Logics around SHIQ in a
Resolution Framework. FZI Technical Report 3-8-04/04, (2004)

12. Lisi, F.A., Ferilli, S., & Fanizzi, N., Object identity as search bias for pattern spaces. In F.
van Harmelen (Ed.), ECAI 2002. Proceedings of the 15th European Conference on Artifi-
cial Intelligence (pp. 375–379). Amsterdam: IOS Press, (2002)

13. Lisi F.A., Malerba D., Inducing Multi-Level Association Rules from Multiple Relation,
Machine Learning Journal, 55, 175-210, (2004)

14. McGuinness D.L., van Harmelen F., (eds), Overview of OWL Web Ontology Language,
W3C Recommendation 10 February 2004, http://www.w3.org/TR/owl-features/

15. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discov-
ery. Data Mining and Knowledge Discovery 1(3): 241 - 258, (1997)

16. Motik B., Sattler U., Studer R.. Query Answering for OWL-DL with Rules. Proc. of the 3rd
International Semantic Web Conference (ISWC 2004), Hiroshima, Japan, November, 2004,
pp. 549-563, (2004)

17. Nienhuys-Cheng, S., de Wolf, R. Foundations of inductive logic programming, vol. 1228
of Lecture Notes in Artificial Intelligence. Springer, (1997)

Design and Implementation
of an ECA Rule Markup Language

Marco Seiriö1 and Mikael Berndtsson2

1 Analog Software, Sweden
marco@analog.se

http://www.rulecore.com
2 University of Skövde, Sweden
mikael.berndtsson@his.se

http://www.his.se/berk

Abstract. This paper presents the design and implementation of the
rule engine ruleCore and the ECA rule markup language rCML. In par-
ticular, an extensive set of event operators are shown in the rCML rule
markup language.

1 Introduction

Event Condition Action (ECA) rules were first proposed in the late 1980s and
extensively explored during the 1990s within the active database community for
monitoring state changes in database systems [11, 12, 14]. Briefly, ECA rules
have the following semantics: when an event occurs, evaluate a condition, and if
the condition is satisfied then execute an action. Recently, the concept of ECA
rules have been transferred to the Web community for supporting ECA rules for
XML data, see [3] for an overview.

We see a great need for an ECA rule markup language, in terms of having
a suitable format for exchanging ECA rules between different applications and
platforms. The need for an ECA rule markup language has also been identified
elsewhere, e.g. [2]:

“ ... ECA rules themselves must be represented as data in the (Se-
mantic) Web. This need calls for a (XML) Markup Language of ECA
Rules.”

Existing work on ECA rule markup languages is still very much in the initial
phase, for example, the RuleML [5] standardization initiative has no markup for
events, only for conditions and actions. In addition related work, e.g., [4, 6], on
ECA rules for XML usually has an XML programming style for specifying ECA
rules, rather than specifying ECA rules in a markup language.

We approach the above need for an ECA rule markup language and the
lack of markup for events in existing literature by presenting the design and
implementation of the ECA rule engine ruleCore1 [13] and the ruleCore Markup
1 ruleCore is a registered trademark of MS Analog Software kb

A. Adi et al. (Eds.): RuleML 2005, LNCS 3791, pp. 98–112, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Design and Implementation of an ECA Rule Markup Language 99

Language (rCML)2. The rCML Language has a clear separation between speci-
fication of the three different parts (event, condition, action). In addition, it also
supports specification of an extensive set of composite events.

The work reported is joint work between industry (Analog Software) and
academia (University of Skövde) that has taken place since 2002. The overall
purpose of the joint project has been to transfer research results from the ac-
tive database community into a commercial product. Although ruleCore is a
commercial product it is free for academic research.

The reminder of the paper is structured as follows. Section 2 presents a
brief overview of ruleCore. Section 3 presents details about the rCML markup
language for ECA rules. Finally, Section 4 presents our conclusions.

2 A Brief Overview of ruleCore

In this Section we present an overview of the rule engine ruleCore [13]. RuleCore
is implemented in Python, Qt, XML, and it supports ECA rules and event
monitoring in heterogeneous environments. For example, a broker system can
be used to integrate heterogeneous systems, and ruleCore can be attached to
such a broker system and react to events that are sent through the broker.

2.1 Architecture

The ruleCore engine is built around a concept of loosely coupled components
and is internally event driven. Components communicate indirectly using events
and the publish/subscribe event passing model. The functionality of the ECA
rules are provided by a number of components working in concert, where each
component provides the functionality in a well defined small area. As the com-
ponents are not aware of the recipient of the event they publish, it is easy to
reconfigure the engine to experiment with other models besides the more well
known ECA model. For example, one could insert an additional processing step
between any of the event, condition or action steps. All internal and external
events are stored in a relational database (PostgreSQL). Storing the event oc-
currences in a database implies that traditional database tools can be used for
off-line analysis, visualization, simulation and reporting.

Handling of time is performed with timer events. If a component wishes to
provide some kind of temporal feature, it can subscribe to timer events that
are guaranteed to be generated at a specific time. A special timer component is
responsible for publishing timer events according to wall clock time. The engine
does not provide any hard real-time capabilities.

At the core of ruleCore lies a component framework, see Figure 1. The frame-
work provides services for loading, initializing, starting and stopping compo-
nents. It also handles persistence for the components and manages automatic
crash recovery for the engine. The crash recovery mechanism is fully automatic

2 rCML is a trademark of MS Analog Software kb

100 Marco Seiriö and Mikael Berndtsson

and restores the last known state of the engine at startup in case the engine was
not shut down properly. The recovery mechanism uses the transaction manage-
ment features of the PostgreSQL database to roll forward transactions to keep
the internal state of the engine consistent at all times. The temporal features
of the engine are fully integrated into the recovery process and thus all time
dependencies are managed in a best effort manner even in case of engine failure
or down time.

Fig. 1. ruleCore architecture

Components that receive events contain a local worker thread that processes
incoming events. Processing of events are done asynchronously and in parallel in
the different components. The framework controls the starting and stopping of
threads in order to provide for an ordered and consistent startup and shutdown
procedure. A service layer provides simple services that are available for all
components and the component framework itself. The services of the service layer
are always accessible as opposed to the services provided by the components that
must be loaded and initialized before usage. The service layer also provides for
encapsulation of external components such as databases.

The components that provide the functionality can broadly be divided into
three groups.

– Input components are responsible for implementing support for a specific
transport protocol and accepting events through it. Currently support ex-
ists for receiving events with XML-RPC, TCP/IP Sockets, SOAP, IBM Web-
Sphere MQ, and TIBCO Rendezvous.

– Rule components provide the functionality of the rules. The rule manager,
condition manager and action manager components work together using
event passing to implement the ECA rule execution model.

Design and Implementation of an ECA Rule Markup Language 101

– Support components provide functionality that is directly or indirectly used
by other components. In this group we find components for event routing,
event flow management, persistent state management and management of
the configuration of the engine.

2.2 Situation Detector

In ruleCore terminology a composite event is called a situation. As the main focus
of ruleCore is situation detection, we describe the functionality of the situation
detection component in more detail.

The situation detector is implemented by using a number of detector nodes
connected in a tree structure called a detector tree. Each ECA rule instance
contains its own private instance of a detector tree, where each node in the
detector tree implements some type of event detection.

Each node in the detector tree decides locally what event(s) to subscribe to,
for example, a node might need to know when a specific point in time occurs and
can then subscribe to a timer event in order to be informed when this particular
point in time occurs. When a node detects a change it considers to be of interest
it sends an event to its parent node.

When the root node in the detector tree receives an event signal, the situation
is considered detected and the rule instance is triggered for condition evaluation.
The situation detector can also detect if there is no possibility for detecting the
situation in the future and will inform its enclosing rule instance about this fact
which will then delete itself.

3 The ruleCore Markup Language (rCML)

In this Section we describe the ruleCore Markup Language (rCML) that is used
for specification of events and rules in ruleCore. All described features of rCML
have been implemented and are supported by ruleCore. Encodings in rCML are
in UTF-8. In order to ease comparisons with previous work in active databases
we use the term composite event in this section rather than situation.

3.1 Specification of Event Types

Events are specified inside the <event-defs> element and each individual event
type is described with an <event-def> element. Two different event types are
supported in rCML: basic events and composite events.

Basic Events. A basic event in rCML is defined with an <event-def> element
that has two attributes:

– type. The attribute type is set to basic for basic events.
– name. A unique value for the name attribute that identifies the event.

102 Marco Seiriö and Mikael Berndtsson

Event parameters are specified inside the sub element <parameters> and
each individual parameter is specified with a <parameter> element. Each
<parameter> element has two attributes:

– name. A unique value for the name attribute that identifies the parameter.
– type. Specification of data type for the parameter. Three data types are

supported:
1. string. A string in valid Unicode.
2. number. A decimal number according to ANSI standard X3.274-1996.
3. date. A date in ISO format, e.g., YYYY-MM-DD HH:MM:SS.

Below is an example of a basic event E1 with three parameters:

<event-defs>
<event-def type=’basic’ name=’E1’>

<parameters>
<parameter type=’string’ name=’parameter1’/>
<parameter type=’number’ name=’parameter2’/>
<parameter type=’date’ name=’parameter3’/>

</parameters>
</event-def>

</event-defs>

Composite Events. A simple composite event can be defined by using two
basic events. However, more complex composite events are defined by building
composite events out of other composite events. A composite event that con-
tributes to the detection of another composite event is called a sub-composite
event.

A composite event in rCML is defined with an <event-def> element that has
two attributes:

– type. The attribute type is set to composite for composite events.
– name. A unique value for the name attribute that identifies the event.

Each composite event defined in rCML has four sub elements:

– <detect-event>. The <detect-event> element specifies the event that is gen-
erated when the composite event is detected.

– <no-detect-event>. The <no-detect-event> element specifies the event that
is generated when the composite event can never be detected. When a com-
posite event cannot be detected, e.g., a composite event using a time point
that has already passed, the rule instance is automatically deleted. The <no-
detect-event> event is generated just prior to deletion of the rule instance
containing the composite event that never be detected.

– <event-selector> The <event-selector> element specifies a logical condition
(or filter) for the composite event. See section on specification of conditions
for further details.

Design and Implementation of an ECA Rule Markup Language 103

– <detector>. The composite event detector itself is defined under the
<detector> element. The detector consists of a number of sub elements
(event operators) that describe the composite event.

Each sub element to the <detector> element is an event operator. The fol-
lowing event operators are supported:

– The conjunction operator is supported by the <and> element. Similar event
operators are supported in Snoop [8], Ode [10], and SAMOS [9]. The follow-
ing example specifies that events E1, E2, and E3 must have occurred before
the composite event is detected:

<detector>
<and>

<event-ref type=’event’>E1</event-ref>
<event-ref type=’event’>E2</event-ref>
<event-ref type=’event’>E3</event-ref>

</and>
</detector>

– The disjunction operator is supported by the <or> element. Similar event
operators are supported in Snoop [8], Ode [10], and SAMOS [9]. The fol-
lowing example specifies that event E1 or event E2 or event E3 must have
occurred before the composite event is detected:

<detector>
<or>

<event-ref type=’event’>E1</event-ref>
<event-ref type=’event’>E2</event-ref>
<event-ref type=’event’>E2</event-ref>

</or>
</detector>

– The sequence operator is supported by the <sequence> element. The se-
quence operator is perhaps most useful when the sub-events are basic events.
Similar event operators are supported in Snoop [8], Ode [10], and SAMOS
[9]. The following example specifies that event E1 is followed by event E2,
and that event E3 occurs after E2:

<detector>
<sequence>

<event-ref type=’event’>E1</event-ref>
<event-ref type=’event’>E2</event-ref>
<event-ref type=’event’>E3</event-ref>

</sequence>
</detector>

104 Marco Seiriö and Mikael Berndtsson

– The prior sequence operator is supported by the <prior> element. The
<prior> element behaves like the <sequence> element when all of its sub
events are basic events. However, when the sub events are composite events
the semantics of the composite event detection are as follow. The termi-
nating event in a sub-composite event must occur before the terminating
event in the following sub-composite event occurs. The semantics of the
prior sequence operator in rCML is similar to the semantics of the prior
event operator as defined in Ode [10]. The following example specifies that
the detection of the sub-composite event CE1 must be completed before the
terminating event in the following sub-composite event CE2 occurs:

<detector>
<prior>

<event-ref type=’event’>CE1</event-ref>
<event-ref type=’event’>CE2</event-ref>

</prior>
</detector>

– The relative sequence operator is supported by the <relative> element. The
<relative> element behaves like the <prior> and <sequence> element when
all of its sub events are basic events. The <relative> element requires that
the terminating event in a sub-composite event is detected before the de-
tection of the initiating event in the following sub-composite event. The
semantics of the relative sequence operator in rCML is similar to the se-
mantics of the relative event operator as defined in Ode [10]. The following
example specifies that the terminating event of the sub-composite event CE1
must be detected before the detection of the initiating event in the following
sub-composite event CE2.

<detector>
<relative>

<event-ref type=’event’>CE1</event-ref>
<event-ref type=’event’>CE2</event-ref>

</relative>
</detector>

– The any operator is supported by the <any> element. A similar event op-
erator is found in Snoop [8]. The any event operator will detect when any m
events out of the n specified sub events have occurred, where m ≤ n. The
order of detection of the sub events is not important. Thus, the semantics of
the <any> element is similar to the <and> element, but with the difference
that the user can choose that only a limited number of the sub events need
to be detected. The following example specifies that the composite event is
detected when two out of the three specified sub events E1, E2, or E3 have
occurred.

Design and Implementation of an ECA Rule Markup Language 105

<detector>
<any number=’2’>

<event-ref type=’event’>E1</event-ref>
<event-ref type=’event’>E2</event-ref>
<event-ref type=’event’>E3</event-ref>

</any>
</detector>

– The between operator is supported by the <between> element. The between
event operator uses one initiating event and one terminating event to detect
the composite event. Any number of events can occur between the initiating
event and the terminating event. All the events that occur between the initi-
ating event and the terminating event can be stored for condition evaluation.
The between event operator is usable when the initiating and terminating
events of a composite event are known but not how many events that will
occur in between them. The following example specifies that the composite
event is detected when E1 is followed by zero or more events before event
E2 occurrs.

<detector>
<between>

<event-ref type=’event’>E1</event-ref>
<event-ref type=’event’>E2</event-ref>

</between>
</detector>

– The not operator is supported by the <not> element. The classical semantics
of the NOT operator when specifying composite events for ECA rules are
that an event E is not detected during an interval specified by two events.
For example, a composite event NOT E3 (E1,E2) is detected if event E3 is
not detected between the detection of E1 and E2. Previous systems [7, 9]
have restricted the use of the NOT operator to: (i) a conjunction [7], i.e.,
event E3 should not occur between (E1 and E2), or ii) a time interval [9],
i.e., event E3 should not occur between 18:00 and 20:00.
The approach taken in rCML generalize the usage of the NOT operator to
any type of event interval. Thus, the NOT operator extends previous usage
of the NOT operator for specifying composite events for ECA rules. The
following example specifies that the composite event is detected when event
E5 is not detected during the detection of the sequence (E1, E2,E3).

<detector>
<sequence>

<event-ref type=’event’>E1</event-ref>
<event-ref type=’event’>E2</event-ref>
<event-ref type=’event’>E3</event-ref>
<not>

<event-ref type=’event’>E5</event-ref>

106 Marco Seiriö and Mikael Berndtsson

</not>
</sequence>

</detector>

– The count operator is supported by the <count> element. The count event
operator is used to count how many times its only sub event is detected
within an interval. The interval is configured in such a way that the count
operator knows when it should start and stop counting event occurrences.
Thus, a <count> element is either in an open state (counting) or in a closed
state (not counting). The <countcfg> element has six sub elements that
must be in the cocfg namespace:

1. <open-output> - This element specifies the value a <count> element
has when it is in the open state. Possible values are:
• true - Output true to the <count> element.
• false - Output false to the <count> element.
• input - Output the same value as the <count> element receives from

the its sub event.
2. <closed-output> - This element specifies the value a <count> element

has when it is in the closed state. The possible values are the same as
for <open-output>.

3. <open-count> - This element describes when to activate (or open) the
count operator. It contains an integer that specifies the number of event
occurrences that must have occurred before the counter starts.

4. <close-count> - This element describes when to close the count operator.
It contains an integer that specifies the number of event occurrences that
must have occurred before the counter is closed. The <close-count>
integer should be greater than the <open-count> integer.

5. <periodic> - This element is used to specify a periodic behaviour of
the <count> element. It means that the <count> element is in the
open state as many times as specified by <open-count> and then in the
closed state as many times as specified by <closed-count>. Valid values
are “True” or “False”.

6. <initial-state> - This element specifies the initial state of the <count>
element, which can be Open or Closed.

In its simplest form, the count operator counts the number of event occur-
rences:

<count>
<event-ref>E1</event-ref>

</count>

In more advanced forms, the count operator counts the number of event
occurrences when specific conditions are met. For example, the following
composite event ignores the first two occurrences of E1, and counts the
following three occurrences of E1:

Design and Implementation of an ECA Rule Markup Language 107

<detector>
<count>

<cocfg:countcfg xmlns:cocfg=’http://www.rulecore.com/cocfg’>
<cocfg:open-output>true</cocfg:open-output>
<cocfg:closed-output>false</cocfg:closed-output>
<cocfg:open-count>2</cocfg:open-count>
<cocfg:close-count>5</cocfg:close-count>
<cocfg:periodic>False</cocfg:periodic>
<cocfg:initial-state>Open</cocfg:initial-state>
</cocfg:countcfg>
<event-ref type=’event’>E1</event-ref>

</count>
</detector>

– The timeport operator is supported by the <timeport> element, and it sup-
ports specification of absolute, relative, and periodic time events. Similar
events have been proposed by the active database community.
The following example in rCML specifies an absolute time event Event2, i.e.,
the timeport is opened 15th of June 2004 at 12:30:30, and that the timeport
closes 15th of June 2004 at 12:30:30.

<detector>
<timeport xmlns:xmlns=’http://www.rulecore.com/tpcfg’

xmlns:tpcfg=’http://www.rulecore.com/tpcfg’>
<tpcfg:timers xmlns:tpcfg=’http://www.rulecore.com/tpcfg’>

<tpcfg:timer tpcfg:name=’Timer’>
<tpcfg:start-date>

<tpcfg:year tpcfg:mode=’constant’>2004</tpcfg:year>
<tpcfg:month tpcfg:mode=’constant’>6</tpcfg:month>
<tpcfg:day tpcfg:mode=’constant’>15</tpcfg:day>
<tpcfg:weekday tpcfg:mode=”> </tpcfg:weekday>
<tpcfg:hour tpcfg:mode=’constant’>12</tpcfg:hour>
<tpcfg:minute tpcfg:mode=’constant’>30</tpcfg:minute>
<tpcfg:second tpcfg:mode=’constant’>30</tpcfg:second>

</tpcfg:start-date>
<tpcfg:stop-date>

<tpcfg:year tpcfg:mode=’constant’>2004</tpcfg:year>
<tpcfg:month tpcfg:mode=’constant’>6</tpcfg:month>
<tpcfg:day tpcfg:mode=’constant’>15</tpcfg:day>
<tpcfg:weekday tpcfg:mode=”> </tpcfg:weekday>
<tpcfg:hour tpcfg:mode=’constant’>12</tpcfg:hour>
<tpcfg:minute tpcfg:mode=’constant’>30</tpcfg:minute>
<tpcfg:second tpcfg:mode=’constant’>30</tpcfg:second>

</tpcfg:stop-date>
<tpcfg:open-output>true</tpcfg:open-output>
<tpcfg:closed-output>false</tpcfg:closed-output>

108 Marco Seiriö and Mikael Berndtsson

</tpcfg:timer>
</tpcfg:timers>
<event-ref alias=’e2,alias2’ type=’alias’>Event2</event-ref>

</timeport>
</detector>

The output of a <timeport> element is controlled by a timer. The timer
is configured to open and close the <timeport> element at specific dates
and times. Each date specification consists of seven fields: year, month, day,
weekday, hour, minute, and second. Each of the seven fields can be individ-
ually set to different modes that decides how the actual value of the time
field will be calculated:
• The constant mode is the simplest. It requires a constant to be entered for

the date part, such as “2004” for the year. The constant mode requires
you to know in advance the exact date or time for the field.

• In order to base dates on the occurrence of events, the offset mode can
be used. The offset mode lets you specify an offset in relation to an event
occurrence. This is useful if a date or time should occur some time after
a certain event. To create a time that occurs ten minutes after a certain
event you would set all the fields modes to offset and set the value to
zero for all fields except the minutes that would be set to +10.

• Dates and times that occur at a regular interval can be specified with
by using the each mode of a field. For example, if the hour field is set
to mode each the time will occur each hour. By setting other fields to
constant mode the time will occur only on those times and dates. This
could for example be used to have a time to occur each day but only
during a certain month.

Each time field does not have to have the same mode. By using different
combinations of the modes for the different part it is possible to specify
dates in an advanced way, for example, specification of a time point that
occurs five hour after an certain event but on the last Sunday of the next
month.

– The state gate operator is supported by the <state-gate> element. A <state-
gate> element can be used to detect whether an object is in a particular
state, for example, between 12:00 and 13:00 the object is in the “LUNCH”
state. A <state-gate> element can be opened or closed depending upon
whether a state exists and what parameters a state instance has. States are
specified by the aid of conditions, this means that the actual specification
of when the state LUNCH begins and ends is done in the <condition-def>
element, i.e.. the reference <sgcfg:condition>condition12
</sgcfg:condition>.

<detector>
<state-gate>

<sgcfg:state-gate-cfg xmlns:sgcfg=’http://www.rulecore.com/sgcfg’>

Design and Implementation of an ECA Rule Markup Language 109

<sgcfg:open-output¿true< /sgcfg:open-output>
<sgcfg:closed-output¿true< /sgcfg:closed-output>
<sgcfg:state-exists¿open</sgcfg:state-exists>
<sgcfg:state-selector>

<sgcfg:condition>condition12</sgcfg:condition>
</sgcfg:state-selector>

</sgcfg:state-gate-cfg>
</state-gate>

</detector>

All state instances are created and deleted by a rule actions.

3.2 Specification of Conditions

Conditions are used in a number of places, e.g., as logical conditions for events
(event selector), or as rule conditions. All types of conditions are defined under
the <condition-defs> element and each individual condition is specified with a
<condition-def> element.

The <condition-def> element has the following attributes:

– name - The name of the condition. All condition names must be unique.
– composite - Specifies whether the condition is a basic condition or a com-

posite condition (contains logical operators). Allowed values are “yes” and
“no”

– always-true - Allowed values are “yes” and “no”

Due to space limitations of this paper we only show an example of a condition
and do not go further into the details of how conditions and expressions are
specified in rCML. The interested reader is referred to [1] for additional details.

<condition-defs>
<condition-def always-true=”no” composite=”yes” name=”Condition 1”>

<parameters>
<parameter name=”selection 1”>

<event-ref>Event1</event-ref>
<param-ref>parameter 1</param-ref>
<instance>first</instance>
<function> mul(, 1.3)</function>

</parameter>
</parameters>

<condition-def>
</condition-defs>

3.3 Specification of Actions

Actions are defined under the <action-defs> element and each individual rule
action is specified using the <action-def> element. An <action-def> element can

110 Marco Seiriö and Mikael Berndtsson

in turn be composed of several <action-item> elements that are executed in the
order they are defined. Thus, <action-def> element can launch the execution of
two applications, where each application call is defined by a separate <action-
item> element.

Four types of rule actions are supported in rCML:

– script - Script actions execute external scripts or applications
– event - Event actions send event occurrences to the ruleCore rule engine
– create−state - Rule actions that create new state items
– delete−state - Rule actions that delete state items

Below is an example of a script action that executes an external application.

<action-defs>
<action-def name=’Action1’>

<action-item type=”script” name=”exec app”>c:\actions\action1.exe
</action-item>

</action-def>
<action-defs>

3.4 Specification of ECA Rules

ECA rules are specified inside the <rules> element and each individual ECA
rule is described with a <rule> element. The <rule> element has the following
attributes:

– name. A unique value for the name attribute that identifies the rule.
– create. The create attribute controls rule instance creation. Possible values

are:
1. single - only a single rule instance is created.
2. single−replace - only a single rule instance exists at any point in time.

This implies that when a new initiator event occurs, the old rule instance
is deleted and replaced with a new rule instance.

3. init - create a rule instance each time an initiator event occurs.
4. reject - create a new rule instance if the event is rejected by all rule

instances. Rejection can be done by the event selector of the rule.
– parameter. Controls how the event parameters of each event are stored

during the event detection process. Allowed values are:
1. append - store all parameters of each event that are involved in the

detection of the current event,
2. first - store only the parameters of the first event in each situation,
3. last - store only the last parameter of the event detection of each event

type, or
4. never - do not store parameters at all.

Design and Implementation of an ECA Rule Markup Language 111

The <rule> element has the following subelements:

– The <description> element contains a description of the rule. This subele-
ment is only for user convenience and it is not used by the engine.

– The <event-ref> element contains a reference to the composite event that
trigger the rule. The main target of applications for rCML are applications
that react on composite events. However, a simple basic event can also act
as a triggering event for a rule by constructing a composite event with only
one sub event.

– The <condition-ref> contains a reference to a condition definition element
<condition-def> that specifies a condition that is evaluated when the rule
is triggered by its event.

– The <action-ref> contains a reference to a <action-def> element that is
executed if the rule condition is evaluated to true.

– The <minus-action-ref> contains a reference to a <action-def> element that
is executed if the triggering event can never be detected.

– The <instance-limit> element is used to limit the number of the rule instance
for each type of rule. Possible values are:
1. None
2. An integer specifying the maximum number of rule instances.

The <event-ref>, <condition-ref> and <action-ref> and <minus-action-
ref> all contain an attribute called enabled with the possible values of yes or
no. Thus a rule whose rule condition should always be evaluates to true is spec-
ified as <condition-ref enabled=’no’></condition-ref>.

Below is an example of an ECA rule in rCML:

<rules>
<rule parameter=’append’ create=’single’ name=’Rule1’>

<description>A description of this rule</description>
<event-ref enabled=’yes’>E1</event-ref>
<condition-ref enabled=’yes’>Condition12</condition-ref>
<action-ref enabled=’yes’>Action1</action-ref>
<minus-action-ref enabled=’yes’>Action2</minus-action-ref>
<instance-limit>None</instance-limit>

</rule>
</rules>

4 Conclusions

This paper has presented an overview of the ruleCore rule engine that is build on
a component framework. We have also presented a first proposal for an ECA rule
markup language. In particular, we have showed how to specify and implement
an extensive set of event operators. Finally, we have also presented some novel
event operators, e.g., state gate, that have previously not been suggested in the
literature.

112 Marco Seiriö and Mikael Berndtsson

Although rCML is ruleCore specific, we believe that the rCML design and
implementation can contribute to standardization efforts on developing a more
general ECA rule markup language.

Acknowledgement

This research has been funded by the European Commission and by the Swiss
Federal Office for Education and Science within the 6th Framework Programme
project REWERSE number 506779 (cf. http://rewerse.net).

References

1. J. J. Alferes, R. Amador, E. Behrends, M. Berndtsson, F. Bry, G. Dawelbait,
A. Doms, M. Eckert, O. Fritzen, W. May, P. L. Patranjan, L. Royer, F. Schenk, and
M. Schroeder. Specification of a Model, Language and Architecture for Reactivity
and Evolution. Technical Report REWERSE deliverable I5-D4, 2005.

2. J. J. Alferes, R. Amador, and W. May. A general language for Evolution and
Reactivity in the Semantic Web. In Proceedings of the 3rd Workshop on Principles
and Practice of Semantic Web Reasoning, 2005.

3. J. J. Alferes, J. Bailey, M. Berndtsson, F. Bry, J. Dietrich, A. Kozlenkov, W. May,
P. L. Patranjan, A. Pinto, M. Schroeder, and G. Wagner. State-of-the-art on
Evolution and Reactivity. Technical Report REWERSE deliverable I5-D1, 2004.

4. J. Bailey, A. Poulovassilis, and P. T. Wood. An Event Condition Action Language
for XML. In Proceedings of WWW’2002, pages 486–495, 2002.

5. H. Boley, B. Grosof, M. Sintek, S. Tabet, and G. Wagner. RuleML Design. RuleML
Initiative, http://www.ruleml.org/, 2002.

6. F. Bry and P.-L. Patranjan. Reactivity on the Web: Paradigms and Applications
of the Language XChange. In Proceedings of the 20th Annual ACM Symposium on
Applied Computing SAC’2005, 2005.

7. S. Chakravarthy, E. Anwar, L. Maugis, and D. Mishra. Design of Sentinel: An
Object-Oriented DBMS with Event-Based Rules. Information and Software Tech-
nology, 36(9):559–568, 1994.

8. S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S. K. Kim. Composite Events
for Active Databases: Semantics Contexts and Detection. In Proceedings of the 20th
International Conference on Very Large Data Bases, pages 606–617, September
1994.

9. K. R. Dittrich, H. Fritschi, S. Gatziu, A. Geppert, and A. Vaduva. SAMOS in
hindsight: experiences in building an active object-oriented DBMS. Information
Systems, 28(5):369–392, July 2003.

10. N. Gehani, H. V. Jagadish, and O. Smueli. Event specification in an active object-
oriented database. In Proceedings of the 1992 ACM SIGMOD International Con-
ference on Management of Data, pages 81–90, 1992.

11. N. W. Paton, editor. Active Rules in Database Systems. Monographs in Computer
Science. Springer, 1999. ISBN 0-387-98529-8.

12. N. W. Paton and O. Diaz. Active Database Systems. ACM Computing Surveys,
31(1):63–103, 1999.

13. ruleCore. The ruleCore home page: http://www.rulecore.com/.
14. J. Widom and S. Ceri, editors. Active Database Systems: Triggers and Rules For

Advanced Database Processing. Morgan Kaufmann, 1996. ISBN 1-55860-304-2.

A. Adi et al. (Eds.): RuleML 2005, LNCS 3791, pp. 113–129, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Extending the SweetDeal Approach for e-Procurement
Using SweetRules and RuleML

Sumit Bhansali and Benjamin N. Grosof

Massachusetts Institute of Technology
Sloan School of Management, Cambridge, MA 02139, USA

{bhansali,bgrosof}@mit.edu
http://ebusiness.mit.edu/bgrosof

Abstract. We show the first detailed realistic e-business application scenario
that uses and exploits capabilities of the SweetRules V2.1 toolset for e-
contracting using the SweetDeal approach. SweetRules is a uniquely powerful
integrated set of tools for semantic web rules and ontologies. SweetDeal is a
rule-based approach to representation of business contracts that enables soft-
ware agents to create, evaluate, negotiate and execute contacts with substantial
automation and modularity. The scenario that we implement is of electronic
procurement of computers, with request-response iterated B2B supply-chain
management communications using RuleML as content of the contracting dis-
covery/negotiation messages. In particular, the capabilities newly exploited in-
clude: SweetJess or SweetXSB to do inferencing in addition to the option of
SweetCR inferencing, SweetOnto to incorporate/merge-in OWL-DLP ontolo-
gies, and effectors to launch real-world actions. We identify desirable additional
aspects of query and message management to incorporate into RuleML and give
the design of experimental extensions to the RuleML schema/model, motivated
by those, that include specifically: fact queries and answers to them. We present
first scenario of using SCLP RuleML for rebates and financing options, in par-
ticular exploiting the courteous prioritized conflict handling feature. We give a
new SweetDeal architecture for the business messaging aspect of contracting, in
particular exploiting the situated feature to exchange rulesets, that obviates the
need to write new (non-rule-based) agents as in the previous SweetDeal V1 pro-
totype. We finally analyze how the above techniques, and SweetDeal, RuleML
and SweetRules overall, can combine powerfully with other e-business tech-
nologies such as RosettaNet and ebXML.

1 Introduction

In this paper, we describe in detail a practical electronic contracting scenario that uses
RuleML[1], the Situated Courteous Logic Programs (SCLP) knowledge representa-
tion [6], and the SweetRules V2.1 semantic web rules toolset [2] together to show
how a real-world business application such as electronic procurement can be sup-
ported with semantic web technologies including also OWL [3]. The electronic pro-
curement application was chosen not only because of its wide applicability in e-
business but also because it allows us to showcase different features of the new
SweetRules V2 implementation. Specifically, we show how powerful features of the
new implementation such as importing OWL-DLP ontologies into a rule-based
knowledge base, executing real-world business processes such as sending e-mail from
rules, and inferencing on RuleML rules obtained from ontologies as well as rulebases

114 Sumit Bhansali and Benjamin N. Grosof

possibly expressed in different types of KR. The procurement example allows us to
also see how different business functions/features such as rebates, financing scenar-
ios, payment options, which might be applicable in a wide variety of business applica-
tions, can be expressed using the RuleML KR language.

From our investigation of the electronic procurement scenario, we suggest inclu-
sion of specific features in future versions of the RuleML KR to support query and
message management that would be useful especially in business applications involv-
ing iterated request-response communication, such as e-contracting applications. Fi-
nally, we also explain how our electronic contracting approach based on RuleML and
SweetRules can relate to other e-business technologies such as RosettaNet [4] and
ebXML [5].

The paper is organized as follows. In section 2, we provide a brief overview of the
technologies – RuleML, SweetRules, and SweetDeal – that we use in this research.
Section 3 provides an overview of our approach and scenario. Section 4 illustrates the
expressive power of RuleML in representing key contract provisions, specifically
those of financial incentives. Section 5 describes the iterated contract construction
process in great detail. Section 6 concludes the paper.

2 Overview of Technologies
We provide below a short description of the different technologies used in this re-
search.

2.1 RuleML

RuleML [1] is the emerging standard for representing semantic web rules. The fun-
damental KR used in RuleML is situated courteous logic program or SCLP, which
has been demonstrated to be expressively powerful [6]. The courteous part of SCLP
enables prioritized conflict handling, which in turn enables modularity in specifica-
tion, modification, merging and updating. The situated part of SCLP enables attached
procedures for “sensing” (i.e. testing rule antecedents) and “effecting” (i.e. perform-
ing actions when certain conclusions are reached).

2.2 SweetRules

SweetRules [2], a uniquely powerful integrated set of tools for semantic web rules
and ontologies, is newly enhanced in V2.1. The new version of SweetRules include
capabilities such as first-of-a-kind semantics-preserving translation and interoperabil-
ity between a variety of rule and ontology languages (including XSB Prolog [7], Jess
[8] production rules, HP Jena-2 [9], IBM CommonRules [10], and the SWRL [11]
subset of RuleML), highly scaleable backward and forward inferencing, and easy
merging of heterogeneous distributed rulebases/ontologies.

2.3 SweetDeal

SweetDeal [12] is an electronic contracting approach that uses SCLP RuleML to
support creation, evaluation, negotiation, execution and monitoring of formal elec-

Extending the SweetDeal Approach for e-Procurement Using SweetRules and RuleML 115

tronic contracts between agents such as buyers and sellers. The approach builds on
top of the SweetRules toolest to showcase the power of SCLP, RuleML, and
SweetRules, as a design – and implemented prototype software – in the specific busi-
ness application of electronic contracting.

3 Overview of Approach and Scenario
The extended SweetDeal approach described in this paper consists of three primary
pieces: communication protocol between the contracting agents, contract knowledge
bases and agent communication knowledge bases. We briefly describe these below in
the context of our specific scenario of electronic procurement.

3.1 Communication Protocol

In our scenario, the buyer, Acme Corp, is interested in purchasing computers of a
particular configuration. The buyer attempts to establish a procurement contract with
the seller, Dell Computers. We assume that Dell Computers is a preferred vendor of
computers for Acme Corp. To establish the terms of the contract, the buyer and seller
agents exchange messages in an iterated fashion.

The protocol of message exchanges is as follows: the buyer first sends an RFP (re-
quest for proposal) to the seller. The seller responds to the RFP with the proposal.
Based on specific business criteria, the buyer chooses to accept or reject the proposal.
The buyer may also suggest modifications to the proposal before accepting or reject-
ing it. The RFP message from the buyer contains specific details about the desired
computer configuration. It also contains any queries to which the seller must provide
answers in its proposal. The proposal message from the seller contains several formal
contract fragments which describe useful business provisions such as rebates, financ-
ing options, as well as payment options for the buyer. In addition to specifying the
contractual provisions, the seller also provides answers to the queries posed by the
buyer. Finally, it may pose additional queries for the buyer that the buyer in turn must
provide answers to in the next negotiation message. After the buyer is satisfied with
the final contract proposal from the seller, it generates a purchase order that is sent to
the seller. To complete the transaction, the seller delivers the order and the buyer
makes arrangements to pay the seller via the chosen payment option. Any contingen-
cies in the execution of the order/transaction are handled according to the terms of the
contract.

3.2 Contract Knowledge Bases

Contract negotiation messages exchanged between the agents are RuleML knowledge
bases that are executable within SweetRules V2.1 software. Contract knowledge
bases contain the following six main technical components: rules, facts, ontologies
including OWL-based ontologies as well as object-oriented default inheritance on-
tologies, effectors, f-queries and their answers, and conditional queries. We briefly
describe each of these components below. Since RuleML as an XML-based markup
language is fairly verbose and since the presentation syntax of RuleML has not yet
been implemented completely in SweetRules, we use the IBM CommonRules (CR)
V3.3 syntax in all our examples to allow for concise presentation and easier compre-

116 Sumit Bhansali and Benjamin N. Grosof

hension. In future, it would be more desirable instead to use the RuleML presentation
syntax. See [16], especially the Rules language description, for the initial version of
that presentation syntax, and see [2], especially its documentation, for its experimen-
tal extension to include the Situated feature and for its (currently, still partial) support
in SweetRules.

3.2.1 Rules
RuleML rules express the if-then implications of the contractual fragments and form
the bulk of the contract knowledge base. Each rule has a head and a body. The “head”
is the part of the rule after the “then”, whereas the “body” is the part of the rule that
follows “if” and precedes “then”. The example below shows a simple <rebate> rule:
the seller might wish to provide a rebate offer to the buyer in the proposal. Specifi-
cally, the seller might wish to offer a rebate in the amount of $1000 to the buyer if the
number of computers ordered by the buyer is more than 75. Due to current tool limita-
tions of numeric types in translating CommonRules to RuleML, all numeric constants
in the rule examples below are represented using strings, e.g., “75” is represented as
“seventyfive”.
<rebate>
if
 quoteID(?QuoteID) AND quantityOfItemOrdered(?Q) AND

isGreaterThan(?Q, seventyfive)
then
 rebateAmount(?QuoteID, thousand);

3.2.2 Facts
RuleML facts or assertions are rules that have no bodies. The simple examples below
show facts that are specified in the RFP from the buyer to the seller. The quantity of
item ordered by the buyer is 80 (computers) and the buyer is located in the state of
Florida. (We assume that both buyer and seller are located in USA).

quantityOfItemOrdered(eighty);
buyerLocationState(florida);

3.2.3 Ontologies
Ontologies are vocabularies that express the background knowledge used by the con-
tract rules. They can be either OWL [15] ontologies or rule-based object-oriented
default inheritance ontologies. OWL ontologies used must be in the Description Logic
Programs (DLP) [13] subset of OWL, i.e. in the subset of OWL that is translatable
into LP rules. SweetRules V2.1 software allows for translation from OWL-DLP to
RuleML rules. We show below a simple example of an OWL ontology that is used by
the buyer. The ontology (procurement.owl) has three classes: buyer, seller, and prod-
uct, and three object properties: preferredVendorIs, buysProduct, and sellsProduct.
The ontology fragment also has some instance data: computers is a product, Dell sells
computers, Acme buys computers, Acme has Dell as a preferred vendor. Since the
ontology is in the DLP subset of OWL, a translation from OWL to RuleML exists and
SweetRules V2.1 software can be used (see command C1 below) to convert the on-
tology to a rule-based knowledge base in RuleML.
translate owl clp c:\procurement.owl c:\procurement.clp (C1)

Extending the SweetDeal Approach for e-Procurement Using SweetRules and RuleML 117

The ontology (procurement.owl) is shown below:

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns="http://www.procurement.org/procurement.owl#"
 xml:base="http://www.procurement.org/procurement.owl">
 <owl:Ontology rdf:about=""/>

 <owl:Class rdf:ID="buyer"/>
 <owl:Class rdf:ID="seller"/>
 <owl:Class rdf:ID="product"/>

 <owl:ObjectProperty rdf:ID="preferredVendorIs">
 <rdfs:domain rdf:resource="#buyer"/>
 <rdfs:range rdf:resource="#seller"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="buysProduct">
 <rdfs:domain rdf:resource="#buyer"/>
 <rdfs:range rdf:resource="#product"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="sellsProduct">
 <rdfs:domain rdf:resource="#seller"/>
 <rdfs:range rdf:resource="#product"/>
 </owl:ObjectProperty>

 <seller rdf:ID="dell">
 <sellsProduct rdf:resource="#computers"/>
 </seller>

 <buyer rdf:ID="acme">
 <preferredVendorIs rdf:resource="#dell"/>
 <buysProduct rdf:resource="#computers"/>
 </buyer>

 <product rdf:ID="computers"/>
</rdf:RDF>

The translation of the ontology to rules is shown below. The translation has been
slightly modified for ease of readability. Each of the predicates below would be pre-
fixed in the original translation with a long namespace URI indicated in the OWL
document above. The namespace URI has been removed from all predicates below.

<emptyLabel> if buysProduct(?X, ?Y) then buyer(?X);
<emptyLabel> if buysProduct(?X, ?Y) then product(?Y);
<emptyLabel> if sellsProduct(?X, ?Y) then seller(?X);
<emptyLabel> if sellsProduct(?X, ?Y) then product(?Y);
<emptyLabel> if preferredVendorIs(?X,?Y) then buyer(?X);
<emptyLabel> if preferredVendorIs(?X, ?Y) then seller(?Y);
<emptyLabel> sellsProduct(dell, computers);
<emptyLabel> preferredVendorIs(acme, dell);
<emptyLabel> buyer(acme);

118 Sumit Bhansali and Benjamin N. Grosof

<emptyLabel> product(computers);
<emptyLabel> Class(product);
<emptyLabel> Class(buyer);
<emptyLabel> Class(seller);
<emptyLabel> seller(dell);
<emptyLabel> buysProduct(acme, computers);

Next we show a simple example of expressing an object-oriented default inheri-
tance ontology using rules. In the example, BuyWithCredit is a subclass of Buy. Buy
assigns the value “invoice” to the paymentMode property, but BuyWithCredit assigns
the value “credit” to the paymentMode property, i.e., BuyWithCredit overrides the
paymentMode property inherited by default from Buy. The courteous feature of SCLP
RuleML is a powerful way to express default inheritance using rules. If only
Buy(quoteID) is asserted (i.e. the buyer asserts that it wants to buy), then the payment
mode is assumed to be invoice (by default). If the buyer specifically asserts Buy-
WithCredit(quoteID), then the default payment mode is overridden to be credit in-
stead.
<buyRegular>if Buy(?quoteID) then paymentMode(?quoteID,invoice);
/* BuyWithCredit is a subclass of Buy */
if BuyWithCredit(?quoteID) then Buy(?quoteID);
<buyCredit> if BuyWithCredit(?quoteID)then paymentMode(?quoteID,credit);
overrides(buyCredit, buyRegular);

3.2.4 Effectors
Effectors are a feature of the Situated extension of logic programs. An effector proce-
dure is an attached procedure that is associated with a particular predicate. This asso-
ciation is specified via an effector statement that is part of the rulebase. When a con-
clusion is drawn about the predicate, an action is triggered; this action is the
invocation of the effector procedure, and is side-effect-ful. In general, there may be
multiple such effector statements and procedures in a given rulebase, e.g.., in a given
SweetDeal contract/proposal. Effectors can execute real-world business processes
associated with the execution of the contract. For example, an effector can be used by
the buyer to send the purchase order (PO) to the seller (see <sendPO> rule below). If
the vendor proposal has been approved, then the buyer sends the PO to the sales e-
mail address of the vendor. The effector sendPOtoVendor is associated with the Java
procedure emailMessage in the Effector_EmailPO class, whose path is indicated as
com.ibm.commonrules.examples.situated_programming_examples.familymsg.aprocs.

The Java procedure not shown here for brevity handles the e-mail messaging as-
pect of sending the PO to the vendor. The arguments to the effector predicate – seller
e-mail address, location of the purchase order, approved proposal identifier – are
passed as arguments to the Java procedure.

<sendPO>
if
 approvedVendorProposal(?Vendor, ?ProposalID) AND
 emailSalesAddress(?Vendor, ?SellerAddress) AND locationOfPO(?Location)
then
 sendPOtoVendor(?SellerAddress, ?Location, ?ProposalID);

<emptylabel>
 Effector: sendPOtoVendor
 Class: Effector_EmailPO

Extending the SweetDeal Approach for e-Procurement Using SweetRules and RuleML 119

 Method: emailMessage
 path:
"com.ibm.commonrules.examples.situated_programming_examples.familymsg.aprocs";

3.2.5 Fact-Queries or F-Queries
The traditional notion of the answer to a query in logic programs (and databases) is: a
set of variable-binding lists. In modeling the exchange of contract proposals and asso-
ciated dialogue between contracting parties, however, it is often convenient to model
the answer to an inquiry as a set of facts instead. Accordingly, we have developed the
design of f-queries (short for “fact queries”) as a (fairly simple) experimental exten-
sion to RuleML. Note that, unlike the rest of what we describe of the SweetDeal ap-
proach in this paper, this f-queries feature is not yet implemented in SweetRules.
RuleML f-queries are queries which have facts as their answers. They facilitate the
iterated development of procurement contracts. The example below shows a sample f-
query. It is an f-query from buyer to seller in which the buyer requests the seller for
the unitPriceOfItem. The answer to the f-query is provided by the seller as a RuleML
fact.
Query Example
<query>
 <_body>
 <fclit cneg="no" fneg="no">
 <_opr>
 <rel>unitPriceOfItem</rel>
 </_opr>
 <var>QuoteID</var>
 <var>Price</var>
 </fclit>
 </_body>
</query>

3.3 Agent Communication Knowledge Bases

In addition to the contract knowledge bases that are shared/exchanged, the agents also
have internal RuleML knowledge bases that contain rules to facilitate agent commu-
nication. The effectors feature of SCLP RuleML allows the agents to execute real-
world business processes such as e-mail messaging. This feature is used by the agents
to send the contract rulesets to each other. The actual e-mail messaging effector pro-
cedure is implemented as a Java method that employs the JavaMail API [14]. The
communication process is triggered using the internal agent communication KB and
the SweetRules V2.1 software that supports execution of Java methods attached as
effectors to specified predicates in the KB. A simple example follows: the situated
rule <sendRFP> allows the buyer to send the RFP ruleset to the sales e-mail address
of the seller. The name of the effector in the situated rule is sendRFPtoComput-
erSeller. The effector specification consists of the name of the Java procedure
(emailMessage), the Java implementation class that contains the method (Effec-
tor_EmailRFP), and the path to the class (com.ibm.commonrules.examples.situ-
ated_programming_examples.familymsg.aprocs).

The effector is executed when the buyer wants to buy computers and the seller sells
computers and is in the preferred vendor list of the buyer. When the sendRFPtoCom-

120 Sumit Bhansali and Benjamin N. Grosof

puterSeller predicate is concluded, the attached procedure “emailMessage” is called to
execute the required action. The action consists of reading the RFP from the local file
system and sending it via e-mail to the specified e-mail address of the sales depart-
ment of the seller. For brevity, the Java code to implement the e-mail messaging is not
shown here.

<sendRFP>
if
 wantToBuy(?Buyer, computers) AND seller(?Vendor) AND

sell(?Vendor, computers) AND inPreferredVendorList(?Buyer, ?Vendor) AND
emailSalesAddress(?Vendor, ?Address) AND
locationofRFP(?Buyer, computers, ?Location)

then
 sendRFPtoComputerSeller(?Address, ?Location);

<emptylabel>
 Effector: sendRFPtoComputerSeller
 Class: Effector_EmailRFP
 Method: emailMessage
 path:
"com.ibm.commonrules.examples.situated_programming_examples.familymsg.aprocs";

4 Contract Business Provisions Using RuleML
In this section, we present a few key contract fragments in the procurement contract-
ing scenario and how SCLP RuleML can be used to express them. We intend to show
how the expressive/declarative power of RuleML allows for easy addition and modi-
fication of key B2B contracting provisions. Specifically, we focus on expressing
commonly used financial incentives such as rebates, discount pricing, and financing
options. These incentives could be specified by the seller in its proposal. For the sake
of simplicity and brevity, in this paper version some of the rules (e.g., about monthly
payments in financing options) are highly specific to the particular scenario, rather
than specified in more realistically general form.

4.1 Rebate

For example: the seller wishes to offer a rebate in the amount of $1000 to the buyer if
the quantity of item ordered is greater than 75. This is represented as the <rebate> rule
below.

<rebate>
if
 quoteID(?QuoteID) AND quantityOfItemOrdered(?Q) AND

isGreaterThan(?Q, seventyfive)
then
 rebateAmount(?QuoteID, thousand);

4.2 Pricing Options

For example: If the buyer makes the purchase before April 1 then the unit price of-
fered by the seller is $600; if the purchase is made before April 15, then the unit price
offered is $650. This is specified as the <earlyPurchase> and <latePurchase> rules
below. If both these rules apply, i.e., if the purchase was made before April 1, then

Extending the SweetDeal Approach for e-Procurement Using SweetRules and RuleML 121

precedence is given to the earlyPurchase rule. This precedence is specified using the
courteous prioritization feature of SCLP (and of RuleML): see the overrides fact rule
below.

<earlyPurchase>
if
 quoteID(?QuoteID) AND purchaseDate(?QuoteID, ?Date) AND

isLessThan(?Date, oneApr05)
then
 unitPriceOfItem(?QuoteID, sixhundred);

<latePurchase>
if
 quoteID(?QuoteID) AND purchaseDate(?QuoteID, ?Date) AND

isLessThan(?Date, fifteenApr05)
then
 unitPriceOfItem(?QuoteID, sixhundredfifty);

overrides(earlyPurchase, latePurchase);

MUTEX
 unitPriceOfItem(?QuoteID, sixhundred) AND

unitPriceOfItem(?QuoteID, sixhundredfifty);

4.3 Financing Option

For example: If the financing is requested for 36 months by the buyer, the unit price
of the item is determined to be $600, and the quantity ordered is 50, then the financ-
ing option offered by the seller is such that the monthly payment is $958 and the total
interest paid is $4500 (see the <financing> rule below).

<financing>
if

quoteID(?QuoteID) AND financeForMonths(?QuoteID, thirtysixMonths) AND
unitPriceOfItem(?QuoteID, sixhundred) AND
quantityOfItemOrdered(?QuoteID, fifty)

then
monthlyPayment(?QuoteID, ninehundredfiftyeight) AND
totalInterest(?QuoteID, fourthousandfivehundred);

5 Details of Procurement Contract Construction
Using RuleML and SweetRules V2.1

In this section, we describe in detail the specific steps taken in constructing an e-
contract between the buyer and seller using SCLP RuleML and SweetRules V2.1 in
our electronic procurement scenario.

As described earlier, the buyer has a solo (or unshared) agent communication
knowledge base that can be used to initiate the action of sending an RFP to a specific
seller (in our example – Dell). We call this solo knowledge base – BSO1. BSO1 has
the names of the different sellers, types of products offered by them, their respective
sales e-mail addresses, and whether the sellers are in the preferred vendor list main-
tained by the buyer. The location of the RFP (which itself is a rule-based knowledge
base) is indicated using the locationofRFP predicate. The rule that triggers sending
the RFP to the seller is indicated by <sendRFP>: if the buyer wants to buy computers

122 Sumit Bhansali and Benjamin N. Grosof

and the seller sells computers and is in the preferred vendor list of the buyer, send the
RFP from the indicated local filesystem location to the seller’s sales e-mail address.
The predicate sendRFPtoComputerSeller is associated with the situated effector pro-
cedure emailMessage, which uses the JavaMail API to send the RFP ruleset to the
seller via e-mail.

Buyer Solo KB – BSO1
wantToBuy(acme, computers);
seller(dell);
seller(staples);
sell(dell, computers);
sell(staples, officesupplies);
inPreferredVendorList(acme, dell);
inPreferredVendorList(acme, staples);
emailSalesAddress(dell, "sales@dell.com");
emailSalesAddress(staples, "sales@staples.com");
locationofRFP(acme, computers, "c:\\buyertosellerRFP.clp");

<sendRFP>
if
 wantToBuy(?Buyer, computers) AND seller(?Vendor) AND
 sell(?Vendor, computers) AND inPreferredVendorList(?Buyer, ?Vendor) AND
 emailSalesAddress(?Vendor, ?Address) AND
 locationofRFP(?Buyer, computers, ?Location)
then
 sendRFPtoComputerSeller(?Address, ?Location);

<emptylabel>
 Effector: sendRFPtoComputerSeller
 Class: Effector_EmailRFP
 Method: emailMessage
 path:
"com.ibm.commonrules.examples.situated_programming_examples.familymsg.aprocs";

In SweetRules V2.1, the “exhaustForwardInfer” command is given to derive all the
conclusions from a given rulebase, and along with those conclusions to perform all
the associated effecting actions that those conclusions trigger (i.e., sanction). For
example, the command C2 below generates all the conclusions of BSO1 and (as an
effecting action) sends the RFP to the seller. The “clp” in the first two arguments of
the command indicates that CommonRules V3.3. format is the input and output
knowledge base format, the third argument gives the location of BSO1, and the fourth
argument specifies that IBM CommonRules should be used indirectly as an underly-
ing inference engine when performing inferencing. SweetRules V2.1 software allows
for a choice of such underlying engines. In our example, SweetRules enables Jess or
XSB, as well as CommonRules, to be used as indirect underlying engine; for each
choice of underlying engine, it would generate semantically equivalent conclusions
and perform the same set of triggered effecting actions

exhaustForwardInfer clp clp c:\buyertosellerSendRFP.clp CommonRules (C2)

The RFP sent by the buyer to the seller is a collection of rules. The RFP consists of
two parts – a shared knowledge base that contains most importantly the required
computer configuration details (we call this knowledge base BSH1) and a set of f-
queries that request specific answers from the seller (we call this set of queries
BFQ1).

BSH1 indicates the buyer name, quantity of item ordered, buyer state, and the re-
quired computer configuration details. The rule <checkOfferedConfiguration> is used

Extending the SweetDeal Approach for e-Procurement Using SweetRules and RuleML 123

by the buyer to check whether the vendor offered configuration satisfies the minimum
requirements. Since RuleML built-ins are not currently directly and smoothly sup-
ported in SweetRules V2.1 beyond the SWRL subset of RuleML, we also provide
several facts to support arithmetic comparison.

Buyer to Seller RFP (BSH1)
buyerName(acme); /* buyer name is acme */
quantityOfItemOrdered(fifty); /* quantity of item ordered is fifty */

/* buyer is located in the state of Florida */
buyerLocationState(florida);

/* speed of processor should be at least 2GHz */
requiredMinProcessorSpeedInGHZ(twogigahertz);
if
 requiredMinProcessorSpeedInGHZ(?Speed) and
 offeredProcessorSpeedInGHZ(?OfferSpeed) and isGreaterThan(?OfferSpeed, ?Speed)
then
 isSpeedAcceptable(true);

/* not shown here for brevity: there are also additional computer system configu-
ration details (memory size, hard disk storage capacity, monitor size, monitor
type (flat?), monitor resolution) */ ...
...

/* check if the configuration is acceptable */
<checkOfferedConfiguration>
if
 isSpeedAcceptable(true) and isMemorySizeAcceptable(true) and
 isHardDiskSizeAcceptable(true) and isMonitorSizeAcceptable(true) and
 offeredMonitorType(flat) and
 offeredMonitorResolution(tenTwentyFourBySevenSixtyEight)
then
 isOfferedConfigurationAcceptable(true);

/* The following are some facts in lieu of arithmetic built-ins. */
isGreaterThan(fourgigahertz, twogigahertz);
isGreaterThan(onezerotwofourmb, fivetwelvemb);
isGreaterThan(sixtyGB, fortyGB);
isGreaterThan(seventeen, fifteen);

BFQ1 is the collection of f-queries that ask the seller to specify the vendor quote
identifier, the offered computer configuration details, the unit price of item, taxes as
percent of price, service charge as percent of price, delivery charges for shipment, and
the delivery time in days. For brevity, only a few of the f-queries are shown below.

Buyer to Seller f-Queries (BFQ1)
<rulebase>
 <_rbaselab>
 <ind>FQueries</ind>
 </_rbaselab>
 <query>
 <_body>
 <fclit cneg="no" fneg="no">
 <_opr>
 <rel>quoteID</rel>
 </_opr>
 <var>QuoteID</var>
 </fclit>
 </_body>
 </query>
 <query>
 <_body>

124 Sumit Bhansali and Benjamin N. Grosof

 <fclit cneg="no" fneg="no">
 <_opr>
 <rel>offeredProcessorSpeedInGHZ</rel>
 </_opr>
 <var>Speed</var>
 </fclit>
 </_body>
 </query>
...

After the seller receives the RFP, the seller sends its rule-based contract proposal to
the buyer. The proposal contains three parts – BSH1 (i.e. shared knowledge base
transmitted from buyer to seller – see above), answers to f-queries posed by the buyer
plus the shared knowledge base that contains rules about pricing, rebates, financing
options and other business provisions (we call this SSH1), and lastly f-queries for the
buyer (SFQ1).

Seller to Buyer (SSH1)
/* quote ID is 1 */
quoteID(one);
/* computer configuration details */
offeredProcessorSpeedInGHZ(fourgigahertz);
offeredSizeofmemoryInMB(onezerotwofourmb);
offeredSizeofharddiskInGB(sixtyGB);
offeredMonitorSizeInInches(seventeen);
offeredMonitorType(flat);
offeredMonitorResolution(tenTwentyFourBySevenSixtyEight);

/* Pricing Rules */
/* if purchase date is before April 1 2005, then unit Price is $600;
 if purchase date is before April 15 2005, then unit Price is $650*/
<earlyPurchase>
if
 quoteID(?QuoteID) and purchaseDate(?QuoteID, ?Date) and

isLessThan(?Date, oneApr05)
then
 unitPriceOfItem(?QuoteID, sixhundred);
<latePurchase>
if
 quoteID(?QuoteID) and purchaseDate(?QuoteID, ?Date) and

isLessThan(?Date, fifteenApr05)
then
 unitPriceOfItem(?QuoteID, sixhundredfifty);

overrides(earlyPurchase, latePurchase);

MUTEX
 unitPriceOfItem(?QuoteID, sixhundred) and

unitPriceOfItem(?QuoteID, sixhundredfifty);

/* there is no service charge */
if
 quoteID(?QuoteID)
then
 serviceChargeAsPercentOfPrice(?QuoteID, zeroPercent);

/* Delivery Options */

/* if delivery type is standard then delivery charge is $2500 for the order
 if delivery type is express then delivery charge is $5000 for the order
*/
<standard>
if
 quoteID(?QuoteID) and deliveryType(?QuoteID, standard)
then
 deliveryChargesForShipment(?QuoteID, twentyfivehundred);

Extending the SweetDeal Approach for e-Procurement Using SweetRules and RuleML 125

<express>
if
 quoteID(?QuoteID) and deliveryType(?QuoteID, express)
then
 deliveryChargesForShipment(?QuoteID, fivethousand);
MUTEX
 deliveryType(?QuoteID, standard) and deliveryType(?QuoteID, express);

/* if delivery type is standard then delivery time in days is 14 days
 if delivery type is express then delivery time in days is 7 days
*/
<standardDeliveryTime>
if
 quoteID(?QuoteID) and deliveryType(?QuoteID, standard)
then
 deliveryTimeInDays(?QuoteID, fourteendays);

<expressDeliveryTime>
if
 quoteID(?QuoteID) and deliveryType(?QuoteID, express)
then
 deliveryTimeInDays(?QuoteID, sevendays);

MUTEX
 deliveryTimeInDays(?QuoteID, fourteendays) and

deliveryTimeInDays(?QuoteID, sevendays);

/* Additional assertions from Seller */
/* Financial Incentives section */
/* not shown here for brevity: the financial incentives of discount pricing,
rebate, financing option already shown above in section 4 */
...
/* Sales Tax */
/* no sales tax in Florida */
<tax0>
if
 quoteID(?QuoteID) and buyerLocationState(florida)
then
 taxesAsPercent(?QuoteID, zeroPercent);

/* 5% sales tax in states other than Florida */
<tax5>
if
 quoteID(?QuoteID) and buyerLocationState(?X) and NotEquals(?X, florida)
then
 taxesAsPercent(?QuoteID, fivePercent);

MUTEX
 taxesAsPercent(?QuoteID, zeroPercent) and

taxesAsPercent(?QuoteID, fivePercent);

/* Object-oriented default inheritance using rules */
/* If you buy, then default payment mode is invoice */
<buyRegular> if Buy(?QuoteID) then
paymentMode(?QuoteID, invoice);

/* BuyWithCredit is a subclass of Buy */
if BuyWithCredit(?QuoteID) then Buy(?QuoteID);

<buyCredit>
if BuyWithCredit(?QuoteID) then paymentMode(?QuoteID, credit);

overrides(buyCredit, buyRegular);

MUTEX
 paymentMode(?QuoteID, credit) and paymentMode(?QuoteID, invoice);

isLessThan(twentyfiveMarch05, oneApr05);
isLessThan(twentyfiveMarch05, fifteenApr05);
isLessThan(fiveApr05, fifteenApr05);
isGreaterThan(eighty, seventyfive);
NotEquals(massachusetts, florida);

126 Sumit Bhansali and Benjamin N. Grosof

SFQ1 is a collection of f-queries posed by the seller for the buyer. The seller asks
whether the buyer would like to buy and whether the buyer would like to buy with a
credit card. The seller also queries for the purchase date, delivery type and number of
months of financing requested. For brevity, only a few of the f-queries are shown
below.

Seller to Buyer F-Queries (SFQ1)
<rulebase>
 <_rbaselab>
 <ind>FQueries</ind>
 </_rbaselab>
 <query>
 <_body>
 <fclit cneg="no" fneg="no">
 <_opr>
 <rel>purchaseDate</rel>
 </_opr>
 <var>QuoteID</var>
 <var>Date</var>
 </fclit>
 </_body>
 </query>
...

When the buyer receives the proposal ruleset from the seller, it answers the queries
posed by the seller (see BA1 below) and then performs exhaustive inferencing on the
resulting ruleset (BSH1 + SSH1 + BA1) to obtain the derived conclusion set (CS1).
Logical inferencing allows the buyer to determine the key parameters (such as unit
price, delivery charges, taxes, etc.) of the proposal and also whether the proposal
meets minimum specified criteria in the RFP.

Answers to F-Queries posed by seller (BA1)
Buy(one);
BuyWithCredit(one);
purchaseDate(one, fiveApr05);
deliveryType(one, express);
financeForMonths(one, thirtysixMonths);

The conclusion set (CS1) tells the buyer that the offered configuration is accept-
able, unit price of item will be $650, delivery time will be 7 days, % discount already
included in the price is 13%, taxes are 5%, rebate amount is $1000, and payment
mode is credit.

Conclusion Set (CS1) obtained from BSH1 + SSH1 + BA1
isLessThan(twentyfiveMarch05, oneApr05);
isLessThan(twentyfiveMarch05, fifteenApr05);
isLessThan(fiveApr05, fifteenApr05);
requiredMinProcessorSpeedInGHZ(twogigahertz);
quoteID(one);
requiredMinSizeofmemoryInMB(fivetwelvemb);
offeredSizeofmemoryInMB(onezerotwofourmb);
requiredMonitorResoluton(tenTwentyFourBySevenSixtyEight);
purchaseDate(one, fiveApr05);
quantityOfItemOrdered(eighty);
BuyWithCredit(one);
deliveryType(one, express);

Extending the SweetDeal Approach for e-Procurement Using SweetRules and RuleML 127

NotEquals(massachusetts, florida);
isGreaterThan(fourgigahertz, twogigahertz);
isGreaterThan(onezerotwofourmb, fivetwelvemb);
isGreaterThan(sixtyGB, fortyGB);
isGreaterThan(seventeen, fifteen);
isGreaterThan(eighty, seventyfive);
creditCardNumber(one, ccNumber9876543298765432);
offeredSizeofharddiskInGB(sixtyGB);
overrides(earlyPurchase, latePurchase);
overrides(earlyPurchaseDiscount, latePurchaseDiscount);
overrides(buyCredit, buyRegular);
offeredMonitorSizeInInches(seventeen);
requiredMinSizeofharddiskInGB(fortyGB);
offeredProcessorSpeedInGHZ(fourgigahertz);
financeForMonths(one, thirtysixMonths);
requiredMonitorType(flat);
offeredMonitorType(flat);
buyerName(acme);
buyerLocationState(massachusetts);
requiredMinMonitorSizeInInches(fifteen);
offeredMonitorResolution(tenTwentyFourBySevenSixtyEight);
vendorName(dell);
serviceChargeAsPercentOfPrice(one, zeroPercent);
deliveryChargesForShipment(one, fivethousand);
isSpeedAcceptable(true);
Buy(one);
rebateAmount(one, thousand);
isMonitorSizeAcceptable(true);
isMemorySizeAcceptable(true);
isHardDiskSizeAcceptable(true);
isOfferedConfigurationAcceptable(true);
deliveryTimeInDays(one, sevendays);
discountPercentAlreadyIncluded(one, thirteen);
unitPriceOfItem(one, sixhundredfifty);
taxesAsPercent(one, fivePercent);
paymentMode(one, credit);

6 Relationship of Other B2B Technologies to Our Approach
RosettaNet and ebXML are two very important and influential approaches to XML-
based e-business messaging including about contracting and e-commerce. It is desir-
able to be able to use our SweetDeal approach together with such XML-based e-
business messaging infrastructure. In this section, we discuss how SweetDeal and
(SCLP) RuleML can be used with RosettaNet and with ebXML. The punchline is that
they play well together; the SweetDeal contract rulesets can be carried as the “letters”
content within the “envelopes” of RosettaNet or ebXML messages, i.e., within their
messaging interfaces and protocols. In doing so, it is both possible and useful to util-
ize the (non-OWL) ontologies provided by RosettaNet and ebXML, and to perform
sending of messages as actions.

6.1 RosettaNet

Next, we begin with RosettaNet, and discuss specifically how RosettaNet Partner
Interface Processes (PIPs) can be used with RuleML in the context of our electronic
procurement scenario. RosettaNet is a consortium of information technology, elec-
tronic components, semiconductor manufacturing and solutions providers, which
seeks to establish a common language and standard processes for business-to-business

128 Sumit Bhansali and Benjamin N. Grosof

(B2B) transactions. RosettaNet PIPs define business processes between trading part-
ners. The PIP specifies the roles of the trading partners that participate in the business
process as well as the business activities that compose the process. The PIP also
specifies XML-based action messages or business documents that are exchanged
between the roles during business activities. The specification of a standard structure
for the business documents is a major part of the PIP specification. An example of a
RosettaNet PIP is PIP3A1 which provides a detailed XML message guideline for
implementing the Request Quote business process. A message fragment from PIP3A1
is shown below –

 <ContactInformation>
 <contactName>
 <FreeFormText>A</FreeFormText>
 <EmailAddress>abc@xyz.com</EmailAddress>
 …..
 </contactName>
 </ContactInformation>

The message fragment above specifies the structure for contact information for the
buyer who sends the request for quote to the seller. Our SweetDeal approach can be
used straightforwardly in combination with the exchange of RosettaNet PIP messages
between the two parties. We can also directly use the standardized (non-OWL) onto-
logical terms from the PIP messages in our rulebases. For example, the request for
proposal (RFP) sent by the buyer to the seller in our scenario allows for use of the
ontological terms in the RosettaNet PIP3A1 XML message guidelines. A SweetDeal
quote (contract proposal) rulebase cf. our earlier scenario can then employ as predi-
cates (i.e., as ontological terms) various properties drawn from the PIP specification,
e.g., the unit price of the product, which is specified in RosettaNet using the following
DTD segment –

<!ELEMENT unitPrice (ProductPricing) >
<!ELEMENT ProductPricing (FinancialAmount , GlobalPriceTypeCode) >
<!ELEMENT FinancialAmount (GlobalCurrencyCode , MonetaryAmount) >
<!ELEMENT GlobalCurrencyCode (#PCDATA) >
<!ELEMENT MonetaryAmount (#PCDATA) >

For example, the seller would specify the following fact rule in the proposal to the
buyer:
unitPrice(?GlobalCurrencyCode, ?MonetaryAmount).

6.2 ebXML

Likewise, ebXML can be used in our scenario along with RuleML and the SweetDeal
approach to support electronic contracting between two parties. Both the buyer and
the seller in our scenario would maintain ebXML collaboration protocol profiles
(CPPs) that would describe the specific business collaborations supported by each of
the parties using the ebXML business process specification schema (BPSS). For ex-
ample, the buyer CPP would show that the “request for proposal” is a business proc-
ess that is supported by it. The details of the “request for proposal” business process
would be specified using the ebXML BPSS. The parties that will engage in the inter-
action protocol will reach agreement on how to collaborate by exchanging the CPPs

Extending the SweetDeal Approach for e-Procurement Using SweetRules and RuleML 129

to construct a collaboration protocol agreement (CPA), which fixes the protocol for
interaction between the parties. Once agreement has been reached, ebXML messages
in accordance with the collaboration agreement can be exchanged using ebMS (or
ebXML Message Service). The payload of these messages can contain the RuleML
rulebases to establish the electronic procurement contract.

7 Conclusions
In this paper, we have extended the SweetDeal approach and applied the extended
approach using the new SweetRules V2.1 semantic web rules prototype software to a
practical, real-world B2B application in the domain of electronic contracting. The
electronic procurement contracting scenario that we have described in detail shows
how semantic web rules technology, specifically RuleML and SweetRules, can be
powerfully used in e-contracting.

Acknowledgements
Thanks to Shashidhara Ganjugunte, Chitravanu Neogy, Said Tabet, and the rest of the
SweetRules development team, for helping to realize the implementation, and for
useful discussions.

References
1. Rule Markup Language Initiative, http://www.ruleml.org and

http://www.mit.edu/~bgrosof/#RuleML
2. SweetRules, http://sweetrules.projects.semwebcentral.org/
3. OWL and the Semantic Web Activity of the World Wide Web Consortium.

http://www.w3.org/2001/sw
4. RosettaNet, http://www.rosettanet.org
5. ebXML (ebusiness XML) standards effort, http://www.ebxml.org
6. Grosof, B.N., “Representing E-Business Rules for Rules for the Semantic Web: Situated

Courteous Logic Programs in RuleML”. Proc. Wksh. on Information Technology and Sys-
tems (WITS ‘01), 2001.

7. XSB logic programming system. http://xsb.sourceforge.net/
8. Jess (Java Expert System Shell). http://herzberg.ca.sandia.gov/jess/
9. Jena, http://jena.sourceforge.net/

10. IBM CommonRules. http://www.alphaworks.ibm.com and
http://www.research.ibm.com/rules/

11. SWRL, A Semantic Web Rule Language Combining OWL and RuleML,
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

12. Grosof, B.N., C.T. Poon, “SweetDeal: Representing Agent Contracts With Exceptions us-
ing Semantic Web Rules, Ontologies, and Process Descriptions”. International Journal of
Electronic Commerce (IJEC), 8(4):61-98, Summer 2004, Special Issue on Web E-
Commerce.

13. Grosof, B.N., Horrocks, I., Volz, R., and Decker, S., “Description Logic Programs: Com-
bining Logic Programs with Description Logic”. Proc. 12th Intl. Conf. on the World Wide
Web (WWW-2003).

14. JavaMail, http://java.sun.com/products/javamail/
15. OWL Web Ontology Language, http://www.w3.org/TR/owl-features/
16. Semantic Web Services Framework Version 1.0, http://www.daml.org/services/swsf/1.0

A. Adi et al. (Eds.): RuleML 2005, LNCS 3791, pp. 130–144, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Using SWRL and OWL to Capture Domain Knowledge
for a Situation Awareness Application Applied

to a Supply Logistics Scenario

Christopher J. Matheus1, Kenneth Baclawski2,
Mieczyslaw M. Kokar2, and Jerzy J. Letkowski3

1 Versatile Information Systems, Inc., Framingham, Massachusetts USA
cmatheus@vistology.com
http://www.vistology.com

2 Northeastern University, Boston, Massachusetts USA
ken@baclawski.com, mkokar@ece.neu.edu

3 Western New England College, Springfield, MA, USA
jletkows@wnec.edu

Abstract. When developing situation awareness applications we begin by con-
structing an OWL ontology to capture a language of discourse for the domain of
interest. Such an ontology, however, is never sufficient for fully representing
the complex knowledge needed to identify what is happening in an evolving
situation – this usually requires general implication afforded by a rule language
such as SWRL. This paper describes the application of SWRL/OWL to the rep-
resentation of knowledge intended for a supply logistics scenario. The rules are
first presented in an abstract syntax based on n-ary predicates. We then describe
a process to convert them into a representation that complies with the binary-
only properties of SWRL. The application of the SWRL rules is demonstrated
using our situation awareness application, SAWA, which can employ either
Jess or BaseVISor as its inference engine. We conclude with a summary of the
issues encountered in using SWRL along with the steps taken in resolving
them.

1 Introduction

The problem of Situation Awareness involves the context-dependent analysis of the
characterization of objects as they change over time in an evolving situation with the
intent of establishing an understanding of “what is going on”. Classic examples of
tasks where situation awareness is of great importance include air traffic control,
crisis management, financial market analysis and military battlespaces. For domains
such as these, significant effort has gone into both understanding the problem and
developing automated techniques and applications for establishing situation aware-
ness [1]. A key part of this problem is identifying relations among the objects that are
relevant to the situation and to the goals of the situation analyst. For any non-trivial
situation the number of possible relations that might be considered is so vast that it is
necessary to reduce the space of candidate relations by using additional knowledge
about the situation’s domain and about the specific objectives of the current situation.
In an automated system designed to assist in establishing situation awareness this
additional knowledge falls under the broad heading of “domain knowledge” and its
use requires some form of knowledge representation (KR).

Using SWRL and OWL to Capture Domain Knowledge 131

In our work on developing situation awareness systems we have been exploring the
use of Semantic Web technologies for domain knowledge representation. We have
found the OWL Web Ontology Language to be a very useful means for capturing the
basic classes and properties relevant to a domain. These domain ontologies establish a
language of discourse for eliciting more complex domain knowledge from subject
matter experts (SME). Due to the nature of OWL, these more complex knowledge
structures are either not easily represented in OWL or, in many cases, are not repre-
sentable in OWL at all. The classic example of such a case is the relationship un-
cleOf(X,Y). This relation, and many others like it, requires the ability to constrain the
value of a property (brotherOf) of one term (X) to be the value of a property (childOf)
of the other term (Y); in other words, the siblingOf property applied to X (i.e.,
brotherOf(X,Z)) must produce a result Z that is also a value of the childOf property
when applied to Y (i.e., childOf(Y,Z). This “joining” of relations is outside of the
representation power of OWL. One way to represent knowledge requiring joins of this
sort is through the use of the implication () and conjunction (AND) operators found
in rule-based languages. The rule for the uncleOf relationship appears as follows:

brotherOf(X,Z) AND childOf(Y,Z) uncleOf(X,Y)

We initially started developing the complex knowledge structures needed for our
situation awareness applications using RuleML [2] as described in [4]. With the intro-
duction of the Semantic Web Rule Language [3] (SWRL) we decided to investigate
the potential for its use in our applications. SWRL was attractive because of its close
connection with OWL DL and the fact that it, like OWL, has well-defined semantics.
The two biggest drawbacks we saw at the time were its restriction to binary predicates
(a characteristic inherited from OWL) and the lack of tools, in particular editors and
consistency checkers. We confronted the lack of tools in part by developing our own
graphical editor for SWRL called RuleVISor, but there is still an outstanding need for
tools to check for consistency 1) within SWRL rules, 2) across SWRL rules and 3)
between SWRL rules and the OWL ontologies upon which they are built. As for the
issue of binary predicates we employ an approach by which n-ary predicates, such as
the unconstrained predicates permitted by RuleML, can be systematically converted
into binary predicates represented in SWRL; we describe this approach in Section 5 of
this paper.

As we worked further on developing and using SWRL rules we encountered a
number of additional issues that needed to be addressed before a practical implemen-
tation of our application could be realized. These issues include 1) the lack of nega-
tion as failure, 2) the need for procedural attachments and 3) the implementation of
SWRL built-ins. Other concerns of particular importance to situation awareness –
such as the representation of time, data pedigree and uncertainty – are not explicitly
addressed in either SWRL or OWL; in fact, for the case of time (more specifically the
changes of property values over time) the languages’ monotonicity assumption tech-
nically precludes them or at least requires significant extra effort to circumvent the
imposed constraints. We reported on some of these issues in our position paper and
presentation [4] at the W3C Workshop on Rule Languages for Interoperability [5] and
further elaborate on them in this paper.

The primary intent of this paper is to describe our experience of using SWRL and
OWL to represent the domain knowledge for a supply logistics scenario and show

132 Christopher J. Matheus et al.

how this knowledge was employed in our situation awareness application, SAWA.[6,
7] We begin the paper by introducing the supply logistics “repairable assets” scenario
and then describe the OWL ontology we developed to capture the scenario’s key
classes and properties. We then describe the domain knowledge rules for the scenario,
starting with an abstract set of higher-order rules (i.e., rules that permit n-ary predi-
cates) that are relatively easy to understand. These rules are then converted into an
abstract representation in which the n-ary predicates have been converted to instances
of classes representing the predicates and properties corresponding to the n-ary terms.
These abstract rules are then converted into the less easy to read SWRL syntax. The
SWRL rules are made operational by translating them into rules appropriate for inter-
pretation by a forward-chaining inference engine – a process requiring additional
operators such as gensym, assert and procedures to implement SWRL built-ins.
The processing of these rules by SAWA is briefly summarized and a performance
comparison is made between the use of two inference engines, BaseVISor (a Rete-
based inference engine optimized for triples) and Jess (a Java implementation of the
Rete-based CLIPS inference engine), either of which can be plugged into SAWA.

Fig. 1. Repairable Assets Pipeline

2 Repairable Assets Domain
With assistance from SMEs at AFRL Wright Research Site we analyzed a supply
logistics scenario involving the monitoring of “repairable assets”. Repairable assets
for the USAF represent aircraft parts that when found to be malfunctioning on an
aircraft can be repaired for reuse either locally at the airbase’s repair shop or at a re-
mote repair depot. The diagram in Figure 1 shows a simplified version of the repair-
able assets pipeline used by the USAF. Each airbase has a supply of aircraft parts
maintained at its local base supply along with the capability of repairing certain types
of parts at its local repair shop. Some parts cannot be repaired locally and so they are
shipped (usually by commercial overnight carriers) to remote supply depots that have
more extensive repair capabilities. The supply depots repair whatever parts they can
and place them into their depot supplies from which they are shipped out to airbases
as needed. Keeping repairable parts at a sufficient level across a collection of airbases
is a complicated process as it involves an understanding of the aircraft based at each
facility, the repairable parts needed by each aircraft type, the repair capabilities of
each base and the supply levels and repair capacity of all remote supply facilities.

The specific objective of our application was to demonstrate the ability to effec-
tively monitor the supply levels across a handful of airbases kept in supply by a set of

Using SWRL and OWL to Capture Domain Knowledge 133

remote supply depots. While it would certainly be possible to develop a one-time,
stand-alone application to achieve this task we were interested in demonstrating the
applicability of our general-purpose situation awareness application, SAWA, to this
problem. SAWA uses OWL and SWRL to represent knowledge relevant to a domain
of situation awareness problems and then employs a generic inference engine,
BaseVISor or Jess, to reason about a specific evolving situation. SAWA has been
described elsewhere [6, 7] and so we will not go into the details of its workings in this
paper. To provide a glimpse into what SAWA does, a screenshot of its interface
adapted for the Repairable Assets domain is shown in Figure 2. The interface is com-
prised of five windows. The top-most window is the control pane in which resides the
control menus, current event info and performance meters. In the middle right-hand
window, a map depicts the physical locations of the airbases along with drillable
summary sub-windows showing the status of the planes and parts present at each
base. The middle left-hand window provides an interactive, graphical representation
of the relations detected in the situation; these relations are also described in detail in
the relations table that appears in the lower left-hand window. Detailed information
about all of the objects and object attributes appear in the object table in the lower
right-hand window.

3 Repairable Assets Ontology
As is our practice [4], we began the process of capturing the domain knowledge perti-
nent to the repairable assets problem by first developing an ontology in OWL. The

Fig. 2. SAWA Interface for the Repairable Assets Domain

134 Christopher J. Matheus et al.

primary objects in this ontology (shown in Figure 3) include airbases, airplanes, parts,
facilities and remote supply depots. Because we are concerned with quantities of
items such as parts and aircraft it was also necessary to create a QuantityOf class that
permits the association of a numeric count with a specific plane or part type. In this
way we can say that a particular facility has a QuantityOf instance relating a particu-
lar item with a specific number. It was also necessary to be able to associate each
airbase with an ordered list of remote supply facilities available to provide additional
parts; as shown, this was achieved using an rdf:List structure.

Fig. 3. Repairable Assets Ontology

Simulated data was constructed for this scenario consisting of the inventory of air-
craft and parts at four airbases and three remote supply bases taken at various times.
This data was annotated using both the Repairable Assets ontology and the Event
ontology shown in Figure 5. Each event contained facility-specific information such
as the quantity of good aircraft of each type, the quantity of aircraft parts in stock, and
the quantity of fixable parts in stock along with the current need for parts that needed
to be replaced on aircraft undergoing repair. In addition to this “event” data, a file of
annotations was created containing descriptions of the various aircraft types and the
parts that make them up, while another annotation file was constructed to provide
descriptions of the specific airbases, their aircraft and their remote supply facilities.

Fig. 4. Event Ontology

4 Repairable Assets Domain Rules
The objective in our repairable assets scenario is to monitor the supply levels of vari-
ous parts at a number of airbases and compare them to the current needs for those
parts by specific aircraft. We developed an initial set of SWRL rules to achieve this
using RuleVISor, a graphical rule editor we developed at Versatile Information Sys-
tems. These rules deal with local and remote supply levels, local demand levels and
repair rates on a per-part and per-facility basis, identifying when a specific part-type
at a specific airbase is “critical”, “marginal” or “nominal”. In all there were nine rules,

Using SWRL and OWL to Capture Domain Knowledge 135

some of them recursive, that were developed for this task. The logic captured by these
rules is shown here using an abstract Prolog-like Horn-clause representation, in which
variables are prefaced with question marks:

criticalPartAtFacility(?Part, ?Facility, ?Time) :-
 localNeed(?Part, ?Facility, ?Time, ?Need)
 localSupply(?Part, ?Facility, ?Time, ?Supply)
 ?Need <= ?Supply.

 marginalPartAtFacility (?Part,?Facility,?Time) :-
 localSupply(?Part, ?Facility, ?Time, ?Supply)
 localRepairable(?Part, ?Facility, ?Time, ?Repairable)
 remoteAvailable(?Part, ?Facility, ?Time, ?RemoteSupply)
 surplusRequired(?Part, ?Facility, ?SurplusRequired)
?Supply + ?Repairable + ?RemoteSupply < ?SurplusRequired).

In plain English these rules state that a part at a facility is determined to be “criti-
cal” if the current demand at the facility exceeds the current local supply; it is classi-
fied as “marginal” if the total resuppliable rate for the part at the facility is below a
required-surplus threshold; and it is deemed “nominal” otherwise (note, there are no
rules for this state as it is the normal state of all parts that are neither marginal nor
critical). The notion of “resuppliable rate” used in the marginalPartAtFacility rule
represents the total number of parts of a specific type that a facility could have on
hand by the next day if its current local supply level of that part, its current local “re-
pair capacity” for that part and the current supply levels of that part at remote depots
are all added together. If this total falls below the required-surplus level (a static num-
ber established by an SME) the part at that facility is given a status of “marginal’. It is
common practice in the USAF to ship parts as needed between facilities by overnight
delivery, which leads to the natural choice of a day as the basis for determining part
resuppliability. The “repair capacity” at an airbase is a function of the number of parts
waiting to be repaired locally, the repair capacity of the local repair shop and the
status of any sub parts required for the repairs (this value is calculated by additional
supporting rules not shown above).

5 Converting from N-Ary to Binary Predicates

As is evident in the abstract rules for criticalPartAtFacility and marginalPartAtFacil-
ity, we used predicates with more than two terms. We did this because it was the
natural way to represent the critical concepts, all of which simultaneously involve a
Part, a Facility and a Time; unfortunately such n-ary predicates are not permitted in
SWRL. As a result, we needed to convert these rules into ones that contained only
binary and unary predicates. The presentation of two design patterns usable for this
purpose have been described by Noy and Rector [8]; our approach is in line with the
second of these patterns. This conversion was done manually for this small set of
rules but the process we employed is systematic enough to automate; for a set of rules
defined in RuleML a single XSLT script would suffice. The approach involves con-
verting the n-ary predicates into instances of unique classes (one for each predicate)
that are then given properties corresponding to the each of their respective terms. The
results of this process can be seen in the following rule corresponding to the mar-
ginalPartAtFacility rule described above.

136 Christopher J. Matheus et al.

if
 ;; find the Local Surplus/Deficit (from another rule)
 rdf:type(?SMNStatement, #SupplyMinusNeed)
 #smnPart(?SMNStatement, ?Part)
 #smnFacility(?SMNStatement, ?Facility)
 #smnTime(?SMNStatement, ?Time)
 #smnNumber(?SMNStatement, ?LocalSurplusOrDeficit)

 ;; find the number Locally Repairable (from another rule)
 rdf:type(?PLRStatement, #PartsLocallyRepairable)
 #localPart(?PLRStatement, ?Part)
 #localFacility(?PLRStatement, ?Facility)
 #localNumber(?PLRStatement, ?NumberRepairable)

 ;; find number Available Remotely (from another rule)
 rpa:remoteSupply(?Facility, ?RemoteSupplyList)
 rdf:type(?PRAStatement, #PartsAvailableAtRemoteFacility)
 #remotePart(?PRAStatement, ?Part)
 #facilityList(?PRAStatement, ?RemoteSupplyList)
 #remoteNumber(?PRAStatement,?NumberAvailableRemotely)
 #remoteTime(?PRAStatement, ?Time)

 ;; look up Minimum Threshold
 rpa:minimumPartsInSupply(?Facility,
 #MinimumThresholdStatement)
 rpa:item(?MinimumThresholdStatement, ?Part)
 rpa:number(?MinimumThresholdStatement, ?MinimumThreshold)

 ;; add SurplusOrDeficit, Repairable, & RemotelyAvailable
 swrlb:add(?TotalAvailable, ?LocalSurplusOrDeficit,
 ?NumberRepairable, ?NumberAvailableRemotely)

 ;; test if the Threshold is greater than the Total
 swrlb:greaterThan(?MinimumThreshold, ?TotalAvailable)

then
 rdf:type(?MPFStatement, #MarginalPartAtFacility)
 #marginalPart(?MPFStatement, ?Part)
 #marginalFacility(?MPFStatement, ?Facility)
 #marginalTime(?MPFStatement, ?Time)
 #marginalNumber(?MPFStatement, ?TotalAvailable)

In the conclusion of the rule (i.e., the five lines of code after the “then”) it can be
seen that the marginalPartAtFacility(?Part,?Facility,?Time) predicate has been con-
verted into an instance of a locally defined class MarginalPartAtFacility represented
by the variable ?MPFStatement. To this instance three properties (marginalPart, mar-
ginalFacility and marginalTime) have been attributed with values corresponding to
the variables ?Part, ?Facility and ?Time. (A fourth property “marginalNumber” is
used to encode the degree to which the required surplus level has been unmet.) In the
body of the rule there are three places where the predicates localSupply, localRepair-
able and remoteSupply from the abstract rule have been converted into statements
referring to instances of local classes with properties corresponding to each of their
original four terms. For example, the localSupply(?Part,?Facility,?Time,?Supply)
predicate from the abstract rule is converted into a reference to an instance of the
class SMNStatement (SMN stands for Supply Minus Need) which has the four prop-

Using SWRL and OWL to Capture Domain Knowledge 137

erties - localPart, localFacility, localTime and localNumber - associated with the four
terms corresponding to Part, Facility, Time and Supply, respectively. When this rule
is processed, the inference engine will look for the occurrence of these class instances
and their corresponding properties in working memory; it will only find them if other
rules (not shown) have previously fired and as a result asserted these instances and
properties.

Note that the classes used to stand in place of the n-ary predicates are all defined
local to the rule set (as indicated by the preceding hash mark #) and are not a part of
the main ontology described in Section 3. These classes do not in fact have to be ex-
plicitly defined in the rule set because the mere use of one as the object of the rdf:type
property requires (by the axioms of RDF/OWL) that there be a local class identified
by that reference; any OWL-compliant reasoner will infer its existence. The same
holds true for the properties that stand in place of the predicate terms. The only re-
quirements of these local classes are that they be uniquely named and that whenever
one is used in the body of a rule that there be at least one rule that asserts an instance
of the same class in its head, otherwise the first rule will never fire.

6 SWRL Rules and Their Execution

The SWRL code for the marginalPartAtFacility rule, developed with the help of
RuleVISor, appears in Appendix A. The primary reason for including the SWRL code
in this paper is to demonstrate how a relatively simple rule expressible in just six lines
of high-level code mushrooms into a much more complex listing of over one hundred
lines of code that is extremely difficult to interpret and even more difficult to debug.
The nine rules making up the SWRL rule set for the Repairable Assets scenario
amounted to nearly 1200 lines of code and demanded countless hours of debugging.
One can argue that SWRL was never intended to be a language for the manual devel-
opment of rules and that what is needed are more powerful editors that permit rules to
be represented more abstractly and then compiled into SWRL for execution. Neither
RuleVISor nor the SWRL editor provided with the Protégé OWL plug-in [9] provide
this level of functionality – both simply permit the direct editing of SWRL code with
its inherent constraint to binary predicates. The requirement to work at such a pain-
fully low level of representation is a major hurdle for anyone wishing to use SWRL
for even moderately complex tasks.

Assuming one has a set of SWRL rules, such as the repairable assets rules de-
scribed above, there remains the question of how to execute them. There are no infer-
ence engines known to the authors that have full native support for SWRL rules. The
Institut für Informatik, Freie Universität Berlin [10] has developed a prototype engine
for SWRL but it does not (as of this writing) permit full OWL reasoning (only inheri-
tance reasoning is supported) nor does it implement the SWRL built-ins. We have
implemented a Jess-based reasoner that includes a reasonably complete set of axioms
for RDF/OWL and supports a large subset of SWRL built-ins; this reasoner is at the
heart of our consistency checking service ConsVISor [11]. We have also recently
implemented a high-performance Java-based inference engine that incorporates a
subset of the axioms of RDF/OWL sufficient to support the reasoning required for our
repairable assets problem domain as well as support for the SWRL built-ins used by
these rules. To execute SWRL rules in either the Jess or BaseVISor engines it is first

138 Christopher J. Matheus et al.

necessary to translate them into the corresponding rule languages. In doing so, engine
specific characteristics need to be accounted for that lie outside the scope of SWRL.
Both Jess and BaseVISor are Rete-based, forward chaining inference engines that
work by continuously evaluating the contents of working memory and firing rules
when their antecedents are satisfied. The firing of a rule can result in the “assertion”
of new facts into working memory but this requires an explicit call to the “assert”
operator. There is nothing in SWRL that corresponds to the assert operator – the at-
oms in the head of a SWRL rule are simply inferred to be true whenever all of the
atoms in the body are true but there is no notion of “working memory” into which
facts must be asserted. In the translation from SWRL to Jess or BaseVISor it is neces-
sary to surround all atoms in the heads of rules with the assert() operator; this is done
automatically by XSLT translation scripts.

Because of the use of instances of classes to represent n-ary predicates it is neces-
sary to be able to “generate” these instances as needed. These instances in need of
generation exist as variables in the head of rules that have no corresponding occur-
rence in the body of the rule. When such a variable is detected the translation scripts
add a gensym() operator to the head to generate a unique symbol to represent the
instance. At first this technique seems to be at odds with the “safety” condition in
which all variables in the head of a SWRL rule must be present in the body, but as
suggested in the SWRL specification, it would be possible to add a someValuesFrom
restriction on this variable in the body; we don’t actually do this because it would
have no bearing at all on the firing of the rule.

There is also an issue with implementing the SWRL built-ins. The definitions of
the built-ins in the SWRL specification are given as relations with no explicit in-
put/output designations assigned to their arguments. In our rules we have always
found that we need to use the built-in capabilities as if they were functions in which
you specify the values for all but one of the arguments, which becomes the output
variable. What this lack of input/output designation in SWRL built-ins means from an
implementation perspective is that the code for the built-ins must determine which of
the arguments is supposed to be the output variable and then select the appropriate
functional method to apply to the other arguments. For example, consider swrlb:add
which can be applied to an arbitrary number of two or more arguments with the first
argument being the sum of the remaining arguments. If you use the atom (swrlb:add
?X 1 2) the processor of this statement must detect that the first argument is unbound
(i.e. a variable) and thus it becomes the output argument. Knowing that the value of
the first argument is to be calculated the processor must apply its summation method
to the remaining arguments. If, on the other hand, you pass (swrlb:add 10 ?X 5) to the
processor, it needs to figure out that it should subtract 5 from 10 to calculate the value
of the variable ?X. In this case we have used swrlb:add to do subtraction even though
there is also a swrlb:subtract built-in. Now consider the case where more than one
argument is unbound: (swrlb:add ?X 100 ?Y). What should the processor do in this
case? According to the semantics of SWRL this is perfectly legal even though it
would result in an infinite set. In our system we treat this case as an error, which it
would be for the kinds of practical applications we are interested in. Alternatively, if
one really needed the set of all relations consistent with the bound terms, procedures
could be implemented that return some notational form from which the members of
the set could be derived. In our cases, however, this approach would needlessly com-

Using SWRL and OWL to Capture Domain Knowledge 139

plicate the rules and make it cumbersome to deal with the most common case where
what is really desired is a function.

A final issue encountered with the practical application of SWRL was the need for
some form of negation as failure. Since there are so many parts on an aircraft it was
highly desirable to require airbases to only report when there was a need for the repair
of a specific part rather than report the status of all parts on the aircraft. The quite
natural assumption in this case is that a part is working properly unless informed
otherwise. This becomes an issue because we need to be able to count the number of
pairs needing repair at an airbase which requires looking up the number of parts
needed for each aircraft in the airbase’s rdf:List of stationed aircraft. As the rules walk
through this aircraft list they can only fire if there is something in working memory
that triggers them. That is unless the not() operator is used in which case the absence
of a particular fact can lead to the firing of a rule, which is exactly what we want. In
our rules that count the number of a specific part needing repair at an airbase there is
one rule that checks for the occurrence of a fact stating that an aircraft at that base
needs that part and another rule looking for the absence of such a fact. In our scenario
this is a perfectly reasonable thing to do since airbases are required to report on all
parts needing repair. We can thus safely assume that our world is closed within the
scope of the status reports sent out by the airbases. Both BaseVISor and Jess provide
a not() operator that implements negation as failure (NAF). Although neither of them
provide a scoped NAF operator (SNAF) it would be easy to define the specific scope
in this case using the URI specifying the Event that transmitted a base’s status report
data for a specific Time. Our rules actually implement a notion of Event scoping as
most of them include an explicit reference to an Event for a specific Time (see the
beginning of the rule listed in Appendix A).

7 BaseVISor Versus Jess

We have used Jess as an inference engine for a number of RDF/OWL applications
over the last couple years. On several occasions we developed code to extend its ca-
pabilities, most markedly in the area of SWRL built-ins and performance monitoring.
When working with the internals of the Jess source code it becomes apparent that a lot
of legacy code exists that is there to support the LISP-like list structures that CLIPS
and OPS-5 supported. Since our RDF/OWL applications deal only with triples there is
no need for all of the complexity enabled by Jess’ data structures, which carry with
them significant overhead particularly when doing lookups within the Rete network.
When it came time to augment the Rete network with uncertainty processing capabili-
ties (an important requirement for many situation awareness tasks) we took the oppor-
tunity to develop a triples-based Rete network from scratch. The result is BaseVISor,
which has now replaced Jess as the core of SAWA. Space limitations prevent us from
going into more details of the internals of BaseVISor or its support for SWRL; how-
ever, we do want to highlight the performance improvement afforded by BaseVISor
over Jess as depicted in Figure 7. This graph compares the performance of BaseVISor
versus Jess as the number of ground facts increases. Except for a very small portion at
the lower left of the graph where BaseVISor is slightly slower (due to some index
optimization that does not payoff on small data sets of less than 500 facts), BaseVISor

140 Christopher J. Matheus et al.

outperforms Jess and shows a near linear rate of change compared to Jess’ polynomial
increase.

Fig. 5. BaseVISor vs. Jess performance

8 Conclusion

In our recent efforts to develop a situation awareness application for a supply logistics
scenario we explored the utility of using SWRL and OWL to represent pertinent do-
main knowledge and apply it to simulated data using forward chaining inference en-
gines. We encountered several challenges in applying SWRL to this problem includ-
ing foremost the language’s limitation to binary predicates and the lack of tools for
editing and checking SWRL rules. We partially resolved the latter problem by devel-
oping RuleVISor, a graphical SWRL editor that permits the construction of rules
using elements from OWL ontologies. Even with RuleVISor the restriction to binary
predicates forced us to operate at a very low implementation level compared with the
n-ary predicates that were more natural for representing the important domain con-
cepts. Our approach to this problem was to develop abstract higher-arity rules by hand
and then systematically convert the n-ary predicates into classes representing the
predicates and collections of properties to associate values of the higher-arity terms
with the predicate’s class. While this was a manual process it is such that a simple
translation script could perform the process automatically. The final steps of our rule
development effort involved converting the abstract rules represented with binary-
only predicates into SWRL syntax followed by the application of an XSLT script to
translate the SWRL into either Jess or BaseVISor rules for their execution within the

Using SWRL and OWL to Capture Domain Knowledge 141

appropriate inference engine. We used Jess as our engine up until the completion of
our own Rete-based inference engine, BaseVISor, which we have optimized for the
processing of triples and incorporated support for uncertainty reasoning. Initial com-
parisons between the two engines demonstrated BaseVISor’s near linear performance
in the number of ground facts compared with Jess’ polynomial performance.

References

1. M. Endsley and D. Garland, Situation Awareness, Analysis and Measurement, Lawrence
Erlbaum Associates, Publishers, Mahway, New Jersey, 2000.

2. Rule Markup Language Initiative, http://www.ruleml.org/
3. Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof and

Mike Dean. SWRL: A Semantic Web Rule Language Combining OWL and RuleML,
2004. http://www.daml.org/rules/proposal/

4. C. Matheus, Using Ontology-based Rules for Situation Awareness and Information Fusion.
Position Paper presented at the W3C Workshop on Rule Languages for Interoperability,
April 2005. http://www.w3.org/2004/12/rules-ws/program2

5. W3C Workshop on Rule Languages for Interoperability.
http://www.w3.org/2004/12/rules-ws/

6. C. Matheus, M. Kokar, K. Baclawski, J. Letkowski, C. Call, M. Hinman, J. Salerno and D.
Boulware, SAWA: An Assistant for Higher-Level Fusion and Situation Awareness. In Pro-
ceedings of SPIE Conference on Multisensor, Multisource Information Fusion, Orlando,
FL., March 2005.

7. C. Matheus, M. Kokar, K. Baclawski, J. Letkowski, C. Call, M. Hinman, J. Salerno and D.
Boulware, Lessons Learned From Developing SAWA: A Situation Awareness Assistant,
FUSION'05, Philadelphia, PA, July, 2005.

8. N. Noy and A. Rector, Defining N-ary Relations on the Semantic Web: Use With Individu-
als, W3C Working Draft 21, July 2004.

9. SWRL Editor for Protégé with the OWL plugin.
http://protege.stanford.edu/plugins/owl/swrl/

10. ConsVISor Consistency Checking Service, http://www.vistology.com/consvisor/
11. Institut für Informatik, Fachbereich Mathematik und Informatik, Freie Universität Berlin,

An Engine for SWRL rules in RDF graphs.
http://www.inf.fu-berlin.de/inst/ag-nbi/research/swrlengine/

Appendix A: SWRL Code for “Marginal Part at Facility” Rule

<ruleml:imp>
 <ruleml:_rlab
 ruleml:href="#Marginal part at facility"/>
 <ruleml:_body>
 <swrlx:classAtom>
 <owlx:Class owlx:name="&evt;Event"/>
 <ruleml:var>?Event</ruleml:var>
 </swrlx:classAtom>
 <swrlx:datavaluedPropertyAtom
 swrlx:property="&evt;time">
 <ruleml:var>?Event</ruleml:var>
 <ruleml:var>?Time</ruleml:var>
 </swrlx:datavaluedPropertyAtom>

142 Christopher J. Matheus et al.

 <swrlx:classAtom>
 <owlx:Class owlx:name="#SupplyMinusNeed" />
 <ruleml:var>?SMNStatement</ruleml:var>
 </swrlx:classAtom>
 <swrlx:individualPropertyAtom
 swrlx:property="#smnPart">
 <ruleml:var>?SMNStatement</ruleml:var>
 <ruleml:var>?Part</ruleml:var>
 </swrlx:individualPropertyAtom>
 <swrlx:individualPropertyAtom
 swrlx:property="#smnFacility">
 <ruleml:var>?SMNStatement</ruleml:var>
 <ruleml:var>?Facility</ruleml:var>
 </swrlx:individualPropertyAtom>
 <swrlx:datavaluedPropertyAtom
 swrlx:property="#smnTime">
 <ruleml:var>?SMNStatement</ruleml:var>
 <ruleml:var>?Time</ruleml:var>
 </swrlx:datavaluedPropertyAtom>
 <swrlx:datavaluedPropertyAtom
 swrlx:property="#smnNumber">
 <ruleml:var>?SMNStatement</ruleml:var>
 <ruleml:var>?LocalSurplusOrDeficit</ruleml:var>
 </swrlx:datavaluedPropertyAtom>
 <swrlx:classAtom>
 <owlx:Class owlx:name="#PartsLocallyRepairable"/>
 <ruleml:var>?PLRStatement</ruleml:var>
 </swrlx:classAtom>
 <swrlx:individualPropertyAtom
 swrlx:property="#localPart">
 <ruleml:var>?PLRStatement</ruleml:var>
 <ruleml:var>?Part</ruleml:var>
 </swrlx:individualPropertyAtom>
 <swrlx:datavaluedPropertyAtom
 swrlx:property="#localNumber">
 <ruleml:var>?PLRStatement</ruleml:var>
 <ruleml:var>?NumberRepairable</ruleml:var>
 </swrlx:datavaluedPropertyAtom>
 <ruleml:var>?PLRStatement</ruleml:var>
 <ruleml:var>?Facility</ruleml:var>
 </swrlx:individualPropertyAtom>
 <swrlx:individualPropertyAtom
 swrlx:property="&rpa;remoteSupply">
 <ruleml:var>?Facility</ruleml:var>
 <ruleml:var>?RemoteSupplyList</ruleml:var>
 </swrlx:individualPropertyAtom>
 <swrlx:classAtom>
 <owlx:Class
 owlx:name="#PartsAvailableAtRemoteFacility" />
 <ruleml:var>?PRAStatement</ruleml:var>
 </swrlx:classAtom>

Using SWRL and OWL to Capture Domain Knowledge 143

 <swrlx:individualPropertyAtom
 swrlx:property="#remotePart">
 <ruleml:var>?PRAStatement</ruleml:var>
 <ruleml:var>?Part</ruleml:var>
 </swrlx:individualPropertyAtom>
 <swrlx:individualPropertyAtom
 swrlx:property="#facilityList">
 <ruleml:var>?PRAStatement</ruleml:var>
 <ruleml:var>?RemoteSupplyList</ruleml:var>
 </swrlx:individualPropertyAtom>
 <swrlx:datavaluedPropertyAtom
 swrlx:property="#remoteNumber">
 <ruleml:var>?PRAStatement</ruleml:var>
 <ruleml:var>?NumberAvailableRemotely
 </ruleml:var>
 </swrlx:datavaluedPropertyAtom>
 <swrlx:individualPropertyAtom
 swrlx:property="#remoteTime">
 <ruleml:var>?PRAStatement</ruleml:var>
 <ruleml:var>?Time</ruleml:var>
 </swrlx:individualPropertyAtom>
 <swrlx:individualPropertyAtom
 swrlx:property="&rpa;minimumPartsInSupply">
 <ruleml:var>?Facility</ruleml:var>
 <ruleml:var>?MinimumThresholdStatement
 </ruleml:var>
 </swrlx:individualPropertyAtom>
 <swrlx:individualPropertyAtom
 swrlx:property="&rpa;item">
 <ruleml:var>?MinimumThresholdStatement
 </ruleml:var>
 <ruleml:var>?Part</ruleml:var>
 </swrlx:individualPropertyAtom>
 <swrlx:datavaluedPropertyAtom
 swrlx:property="&rpa;number">
 <ruleml:var>?MinimumThresholdStatement
 </ruleml:var>
 <ruleml:var>?MinimumThreshold</ruleml:var>
 </swrlx:datavaluedPropertyAtom>
 <swrlx:builtinAtom swrlx:builtin="&swrlb;add">
 <ruleml:var>?TotalAvailable</ruleml:var>
 <ruleml:var>?LocalSurplusOrDeficit
 </ruleml:var>
 <ruleml:var>?NumberRepairable</ruleml:var>
 <ruleml:var>?NumberAvailableRemotely
 </ruleml:var>
 </swrlx:builtinAtom>
 <swrlx:builtinAtom
 swrlx:builtin="&swrlb;greaterThan">
 <ruleml:var>?MinimumThreshold</ruleml:var>
 <ruleml:var>?TotalAvailable</ruleml:var>

144 Christopher J. Matheus et al.

 </swrlx:builtinAtom>
 </ruleml:_body>
 <ruleml:_head>
 <swrlx:classAtom>
 <owlx:Class owlx:name="#MarginalPartAtFacility"/>
 <ruleml:var>?MPFStatement</ruleml:var>
 </swrlx:classAtom>
 <swrlx:individualPropertyAtom
 swrlx:property="#marginalPart">
 <ruleml:var>?MPFStatement</ruleml:var>
 <ruleml:var>?Part</ruleml:var>
 </swrlx:individualPropertyAtom>
 <swrlx:individualPropertyAtom
 swrlx:property="#marginalFacility">
 <ruleml:var>?MPFStatement</ruleml:var>
 <ruleml:var>?Facility</ruleml:var>
 </swrlx:individualPropertyAtom>
 <swrlx:datavaluedPropertyAtom
 swrlx:property="#marginalTime">
 <ruleml:var>?MPFStatement</ruleml:var>
 <ruleml:var>?Time</ruleml:var>
 </swrlx:datavaluedPropertyAtom>
 <swrlx:datavaluedPropertyAtom
 swrlx:property="#marginalNumber">
 <ruleml:var>?MPFStatement</ruleml:var>
 <ruleml:var>?TotalAvailable</ruleml:var>
 </swrlx:datavaluedPropertyAtom>
 </ruleml:_head>
 </ruleml:imp>

A Semantic Web Based Architecture
for e-Contracts in Defeasible Logic

Guido Governatori and Duy Pham Hoang

School of Information Technology and Electrical Engineering
The University of Queensland, Brisbane, Queensland, Australia, QLD 4072

{guido,pham}itee.uq.edu.au

Abstract. We introduce the DR-CONTRACT architecture to repre-
sent and reason on e-Contracts. The architecture extends the DR-device
architecture by a deontic defeasible logic of violation. We motivate the
choice for the logic and we show how to extend RuleML to capture the
notions relevant to describe e-contracts for a monitoring perspective in
Defeasible Logic.

1 Introduction

Business contracts are mutual agreements between two or more parties engaging
in various types of economic exchanges and transactions. They are used to specify
the obligations, permissions and prohibitions that the signatories should be hold
responsible to and to state the actions or penalties that may be taken in the
case when any of the stated agreements are not being met.

We will focus on the monitoring of contract execution and performance:
contract monitoring is a process whereby activities of the parties listed in the
contract are governed by the clauses of the contract, so that the correspondence
of the activities listed in the contract can be monitored and violations acted
upon. In order to monitor the execution and performance of a contract we need
a precise representation of the ‘content’ of the contract to perform the required
actions at the required time.

The clauses of a contract are usually expressed in a codified or specialised
natural language, e.g., legal English. At times this natural language is, by its own
nature, imprecise and ambiguous. However, if we want to monitor the execution
and performance of a contract, ambiguities must be avoided or at least the
conflicts arising from them resolved. A further issue is that often the clauses
in a contract show some mutual interdependencies and it might not be evident
how to disentangle such relationships. To implement an automated monitoring
system all the above issues must be addressed.

To deal with some of these issues we propose a formal representation of con-
tracts. A language for specifying contracts needs to be formal, in the sense that
its syntax and its semantics should be precisely defined. This ensures that the
protocols and strategies can be interpreted unambiguously (both by machines
and human beings) and that they are both predictable and explainable. In addi-
tion, a formal foundation is a prerequisite for verification or validation purposes.

A. Adi et al. (Eds.): RuleML 2005, LNCS 3791, pp. 145–159, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

146 Guido Governatori and Duy Pham Hoang

One of the main benefits of this approach is that we can use formal methods to
reason with and about the clauses of a contract. In particular we can

– analyse the expected behaviour of the signatories in a precise way, and
– identify and make evident the mutual relationships among various clauses in

a contract.

Secondly, a language for contracts should be conceptual. This, following the well-
known Conceptualization Principle of [13], effectively means that the language
should allow their users to focus only and exclusively on aspects related to the
content of a contract, without having to deal with any aspects related to their
implementation.

Every contract contains provisions about the obligations, permissions, enti-
tlements and others mutual normative positions the signatories of the contract
subscribe to. Therefore a formal language intended to represent contracts should
provide notions closely related to the above concepts.

A contract can be viewed as a legal document consisting of a finite set of
articles, where each article consists of finite set of clauses. In general it is possible
to distinguish two types of clauses:

1. definitional clauses, which define relevant concepts occurring in the contract;
2. normative clauses, which regulate the actions of the parties for contract

performance, and include deontic modalities such as obligations, permissions
and prohibitions.

For example the following fragment of a contract of service taken from [8] are
definitional clauses

3.1 A “Premium Customer” is a customer who has spent more that
$10000 in goods.
3.2 Service marked as “special order” are subject to a 5% surcharge.
Premium customers are exempt from special order surcharge.

while

5.2 The (Supplier) shall on receipt of a purchase order for (Services)
make them available within one day.

and

5.3 If for any reason the conditions stated in 4.1 or 4.2 are not met the
(Purchaser) is entitled to charge the (Supplier) the rate of $100 for each
hour the (Service) is not delivered.

are normative clause. The above contract clauses make it clear that there is the
need to differentiate over Clauses 3.1 and 3.2 on one side, and Clauses 5.2 and
5.3 on the other.The first two clauses are factual/definitional clauses describing
states of affairs, defining notions in the conceptual space of the contract. For
example clause 3.1 defines the meaning of “Premium Customer” for the contract,

A Semantic Web Based Architecture for e-Contracts in Defeasible Logic 147

and Clause 3.2 gives a recipe to compute the price of services. On the other
hand Clauses 5.2 and 5.3 state the (expected) legal behaviour of the parties
involved in the transaction.In addition there is a difference between Clause 5.2
and Clause 5.3. Clause 5.2 determines an obligation for one of the party; on
the other hand Clause 5.3 establishes a permission. Hence, according to our
previous discussion about the functionalities of the representation formalism, a
logic meant to capture the semantics of contracts has to account for such issues.
Since the seminal work by Lee [16] Deontic Logic has been regarded as one on
the most prominent paradigms to formalise contracts. In [8] we further motivate
on the need of deontic logic to capture the semantics of contracts and the reasons
to choose it over other formalisms.

Clause 3.2 points out another feature. Contract languages should account for
exceptions. In addition, given the normative nature of contracts, exceptions can
be open ended, that is, it is not possible to give a complete list of all possible
exception to a condition. This means that we have to work in an environment
where conclusions are defeasible, i.e., it is possible to retract conclusions when
new pieces of information become available.

From a logical perspective every clause of a contract can be understood as a
rule where we have the conditions of applicability of the clause and the expected
behaviour. Thus we have that we can represent a contract by a set of rules,
and, as we have already argued, these rules are non-monotonic. Thus we need a
formalism that is able to reason within this kind of scenario. Our choice here is
Defeasible Logic (we will motivate this choice in section 2).

Finally Clause 5.3 highlights an important aspect of contracts: contracts
often contain provisions about obligations/permissions arising in response to
violations. Standard Deontic Logic is not very well suited to deal with violations.
Many formalisms have devised to obviate some problems of violations in deontic
logic. In this paper we will take a particular approach to deal with violation that
can be easily combined with the other component we have outlined here.

The paper is organised as follows: in Section 2 we present the logic on which
the DR-CONTRACT architecture is based. Then in Section 3 we explain the
extension of RuleML corresponding to the logic of the previous section, and we
establish a mapping between the two languages. Then, in Section 4 we discuss the
system architecture of the DR-CONTRACT framework. Finally we relate our
work to similar approaches and we give some insights about future developments
in Section 5.

2 Defeasible Deontic Logic of Violation

For a proper representation of contracts and to be able to reason with and about
them we have to combine and integrate logics for various essential component
of contracts. In particular we will use the Defeasible Deontic Logic of Violation
(DDLV) proposed in [8]. This logic combines deontic notions with defeasibility
and violations. More precisely DDLV is obtained from the combination of three
logical components: Defeasible Logic, deontic concepts, and a fragment of a logic

148 Guido Governatori and Duy Pham Hoang

to deal with normative violations. Before presenting the logic we will discuss the
reasons why such notions are necessary for the representation of contracts.

In [14] Courteous Logic Programming (CLP) has been advanced as the in-
ferential engine for business contracts represented in RuleML. Here, instead, we
propose Defeasible Logic (DL) as the inferential mechanism for RuleML. In fact,
CLP is just a notational variant of one of the many logics in the family proposed
by [1, 3] (see [4] for the relationships between DL and CLP). Accordingly, it may
be possible to integrate the extensions we develop in the rest of the paper within
a CLP framework. Over the years DL proved to be a flexible non-monotonic
formalism able to capture different and sometimes incompatible facets of non-
monotonic reasoning [1], and efficient and powerful implementations have been
proposed [3, 5, 6, 18]. The primary use of DL in the present context is aimed
at the resolution of conflicts that might arise from the clauses of a contract; in
addition DL encompasses other existing formalisms proposed in the AI & Law
field (see, [9]), and recent work shows that DL is suitable for extensions with
modal and deontic operators [10, 12].

DL analyses the conditions laid down by each rule in the contract, identifies
the possible conflicts that may be triggered and uses priorities, defined over
the rules, to eventually solve a conflict. A defeasible theory contains here four
different kinds of knowledge: facts, strict rules, defeasible rules, and a superiority
relation.

Facts are indisputable statements, for example, “the price of the spam filter
is $50”. Facts are represented by predicates

Price(SpamFilter , 50).

Strict rules are rules in the classical sense: whenever the premises are indis-
putable then so is the conclusion. An example of a strict rule is “A ‘Premium
Customer’ is a customer who has spent $10000 on goods”, formally:

TotalExpense(X, 10000)→ PremiumCustomer(X).

Defeasible rules are rules that can be defeated by contrary evidence. An example
of such a rule is “Premium Customer are entitled to a 5% discount”:

PremiumCustomer(X)⇒ Discount(X).

The idea is that if we know that someone is a Premium Customer, then we
may conclude that she is entitled to a discount unless there is other evidence
suggesting that she may not be (for example if she buys a good in promotion).

The superiority relation among rules is used to define priorities among them,
that is, where one rule may override the conclusion of another rule. For example,
given the defeasible rules

r : PremiumCustomer(X)⇒ Discount(X)
r′ : SpecialOrder (X)⇒ ¬Discount(X)

A Semantic Web Based Architecture for e-Contracts in Defeasible Logic 149

which contradict one another, no conclusive decision can be made about whether
a Premium Customer who has placed a special order is entitled to the 5% dis-
count. But if we introduce a superiority relation > with r′ > r, then we can
indeed conclude that special orders are not subject to discount.

We now give a short informal presentation of how conclusions are drawn in
Defeasible Logic. A conclusion p can be derived if there is a rule whose conclusion
is p, whose prerequisites (antecedent) have either already been proved or given
in the case at hand (i.e. facts), and any stronger rule whose conclusion is ¬p has
prerequisites that fail to be derived. In other words, a conclusion p is derivable
when:

– p is a fact; or
– there is an applicable strict or defeasible rule for p, and either

• all the rules for ¬p are discarded (i.e., are proved to be not applicable)
or

• every applicable rule for ¬p is weaker than an applicable strict1 or de-
feasible rule for p.

For a full presentation of Defeasible Logic see [2, 8],
The next step is to integrate deontic logic in defeasible logic. To this end we

follow the idea presented in [10]. In the context of contract we introduced the
directed deontic operators Os,b and Ps,b. Thus, for example the expression Os,bA
means that A is obligatory such that s is the subject of such an obligation and b
is its beneficiary; similarly for Ps,b, where Ps,bA means that s is permitted to do
A in the interest of b. In this way it is possible to express rules like the following

PurchaseOrder ⇒ OSupplier ,PurchaserDeliver Within1Day

that encodes Clause 5.2 of the contract presented above.
Finally, let us sketch how to incorporate a logic for dealing with normative

violations within the framework we have described so far. A violation occurs
when an obligation is disattended, thus ¬A is a violation of the obligation OA.
However, a violation of an obligation does not imply the cancellation of such
an obligation. This makes often difficult to characterise the idea of violation
in many formalisms for defeasible reasoning [22]. We will take and adapt some
intuitions we developed fully in [11]. To reason on violations we have to represent
contrary-to-duties (CTDs) or reparational obligations. As is well-known, these
last are in force only when normative violations occur and are meant to “repair”
violations of primary obligations. In the spirit of [11] we introduce the non-
classical connective ⊗, whose interpretation is such that OA⊗OB is read as “OB
is the reparation of the violation of OA”. The connective ⊗ permits to combine
primary and CTD obligations into unique regulations. The operator ⊗ is such
that ¬¬A ≡ A for any formula A and enjoys the properties of associativity,
duplication and contraction. For the purposes of this paper, it is sufficient to

1 Notice that a strict rule can be defeated only when its antecedent is defeasibly
provable

150 Guido Governatori and Duy Pham Hoang

define the following rule for introducing ⊗2:

Γ ⇒ Os,bA⊗ (
⊗n

i=1 Os,bBi)⊗Os,bC Δ,¬B1, . . . ,¬Bn ⇒ Xs,bD

Γ, Δ ⇒ Os,bA⊗ (
⊗n

i=1 Os,bBi)⊗Xs,bD
(1)

where X denotes an obligation or a permission. In this last case, we will impose
that D is an atom. Since the minor premise states that Xs,bD is a reparation for
Os,bBn, i.e., the last literal in the sequence

⊗n
i=1 Os,bBi, we can attach Xs,bD

to such sequence. In other words, this rule permits to combine into a unique
regulation the two premises.

Suppose the theory includes

r : Invoice ⇒ Os,bPay Within7Days
r′ : ¬Pay Within7Days ⇒ Os,bPay WithInterest .

From these rules we obtain

r′′ : Invoice ⇒ Os,bPay Within7Days ⊗Os,bPay WithInterest .

As soon as we applied (⊗I) as much as possible, we have to drop all redundant
rules. This can be done by means of the notion of subsumption:

Definition 1. Let r1 = Γ ⇒ A ⊗ B ⊗ C and r2 = Δ ⇒ D be two rules, where
A =

⊗m
i=1 Ai, B =

⊗n
i=1 Bi and C =

⊗p
i=1 Ci. Then r1 subsumes r2 iff

1. Γ = Δ and D = A; or
2. Γ ∪ {¬A1, . . . ,¬Am} = Δ and D = B; or
3. Γ ∪ {¬B1, . . . ,¬Bn} = Δ and D = A⊗⊗k≤p

i=0 Ci.

The idea behind this definition is that the normative content of r2 is fully in-
cluded in r1. Thus r2 does not add anything new to the system and it can be
safely discarded. In the example above, we can drop rule r, whose normative
content is included in r′′.

Formally a conclusion in DDLV is a tagged literal and can have one of the
following forms:

– +Δq to mean that the literal q is definitely provable (i.e., using only facts
and strict rules),

– −Δq when q is not definitely provable,
– +∂q, whenever q is defeasibly provable, and
– −∂q to mean that we have proved that q is not defeasibly provable.

Provability is based on the concept of a derivation. A derivation is a finite se-
quence P = (P (1), . . . , P (n)) of tagged literals satisfying four conditions (which
correspond to inference rules for each of the four kinds of conclusion). Here we
will give only the conditions for +Δ and +∂q. P (1..i) denotes the initial part of
the sequence P of length i:
2 The ⊗ is allowed only in the head of defeasible rules. See [8] for a full motivation of

this design choice

A Semantic Web Based Architecture for e-Contracts in Defeasible Logic 151

The inference rule for ±Δ are just those for forward chaining of strict rules,
thus they corresponds to detachment or Modus Ponens for +Δ and a full search
that modus ponens cannot be applied for −Δ.

To accommodate the new connective (⊗) in DDLV we have to revise the
inference mechanism of Defeasible Logic. The first thing we have to note is that
now a defeasible rule can be used to derive different conclusions. For example
given the rule

r : A ⇒ Os,bB ⊗Os,bC (2)

we can use it to derive Os,bB if we have A, but if we know A and ¬B then the
same rule supports the conclusion Os,bC.

With R[ci = q] we denote the set of rules where the head of the rule is
⊗n

j=1cj where for some i, 1 ≤ i ≤ n, ci = q. For example, given the rule r in (2),
r ∈ R[c1 = Os,bB] and r ∈ R[c2 = Os,bC]. Given an obligation Os,bA, we use
Os,bA to denote the complement of A, i.e., ∼A.

We are now ready to give the proof condition for +∂.

+∂: If P (i + 1) = +∂q then either
(1) +Δq ∈ P (1..i) or
(2) (2.1) ∃r ∈ R[ci = q]

(2.1.1) ∀a ∈ A(r) : +∂a ∈ P (1..i) and
(2.1.2) ∀i′ < i,∃a = ci′ : +∂a ∈ P (1..i)

(2.2) −Δ∼q ∈ P (1..i) and
(2.3) ∀s ∈ R[cj = ∼q] either

(2.3.1) ∃a ∈ A(s) : −∂a ∈ P (1..i) or
(2.3.2) ∃j′ < j, ∀cj′ − ∂cj′ ∈ P (1..i) or
(2.3.3) ∃t ∈ Rsd[q] such that

∀a ∈ A(t) : +∂a ∈ P (1..i)
∀k′ < k, +∂ck′ ∈ P (1..i) and t > s.

The above condition is very similar to the same condition for basic defeasible
logic [2]. The main differences account for the ⊗ connective. What we have to
ensure is that reparations of violations are in force when we try to prove them.
For example if we want to prove Os,bC given the rule r : A ⇒ Os,bB ⊗ Os,bC,
we must show that we are able to prove A, and that the primary obligation
B has been violated. In other words we have already proved ¬B or any other
formula incompatible with B (Clause 2.1.2). A similar explanation holds true
for Clause 2.3.2 where we want to show that a rule does not support an attack
on the intended conclusion.

3 Contracts in RuleML

In order to integrate the DR-CONTRACT engine with Semantic Web technology
we decided to use RuleML [20] as an open and vendor neutral XML/RDF syntax
for contracts. We tried to re-use as many features of standard RuleML syntax as
possible. However, since some notions essential for the representation of contracts

152 Guido Governatori and Duy Pham Hoang

are not present in standard RuleML we have created our DR-CONTRACT DTD
(Figure 1)3.

<!ELEMENT Atom (Not?,Rel,(Ind|Var)*)>

<!ELEMENT Not (Rel,(Ind|Var)*)>

<!ELEMENT Rel (#PCDATA)>

<!ELEMENT Var (#PCDATA)>

<!ELEMENT Ind (#PCDATA)>

<!ELEMENT Fact (Atom)>

<!ELEMENT Imp ((Head,Body)|(Body|Head))>

<!ATTLIST Imp label ID #REQUIRED

strength (strict|defeasible) #REQUIRED>

<!ELEMENT Body (And)>

<!ELEMENT And (Atom|Obligation|Permission)*>

<!ELEMENT Head (Atom|Obligation|Permission|Behaviour)>

<!ELEMENT Behaviour ((Obligation)+,Permission?)>

<!ELEMENT Obligation (Not?,Rel,(Ind|Var)*)>

<!ATTLIST Obligation subject IDREF #REQUIRED beneficiary IDREF #REQUIRED>

<!ELEMENT Permission (Not?,Rel,(Ind|Var)*)>

<!ATTLIST Permission subject IDREF #REQUIRED beneficiary IDREF #REQUIRED>

Fig. 1. DR-CONTRACT Basic DTD

The main limitations of RuleML is that it does not support modalities and
it is unable to deal with violations. The DR-CONTRACT RuleML DTD takes
two different types of literals: unmodalised predicates and modalised literals.
Thus to appropriately represent the deontic notions of obligation and permission
we introduce two new elements <Obligation> and <Permission>, which are
intended to replace <Atom> in the conclusion of normative rules. In addition
deontic elements can be used in the body of derivation rules. Hence we have to
extend the definition of <And> and <Head>. In this way it is possible to distinguish
from brute fact and normative facts. As we have already argued this is essential
if one wants to use RuleML to represent business contracts.

The elements <Var> and <Ind> are, respectively, placeholders for individual
variables to be instantiated by ground values when the rules are applied and
individual constants. Individual constants can be just simple names or URIs
referring to the appropriate individuals. <Rel> is the element that contains the
name of the predicate. <Not> is intended to represent classical negation. Thus its
meaning is that the atom it negates is not the case (or the proposition represented
by the atom is false and consequently the proposition the element represents is
true). RuleML contains two types of negation, classical negation and negation

3 Although the current version of RuleML (Version 0.89) is based on XML Schema,
here due to space limitation and for ease of presentation, we will give the XML
grammar using simplified DTD definitions

A Semantic Web Based Architecture for e-Contracts in Defeasible Logic 153

as failure [7, 23]. However, negation as failure can be simulated by other means
in Defeasible Logic [4], so we do not include it in our syntax.

RuleML provides facilities for many types of rule. However, we believe that
the distinction has a pragmatic flavour more than a conceptual one. In this paper
we are interested in the logical and computational aspects of the rules, thus we
decided to focus only on derivation rules <Imp>.

Derivation rules allow the derivation of information from existing rules [23].
They are able to capture concepts not stored explicitly in the existing informa-
tion. For example, a customer is labelled as a “Premium” customer when he
buys $10000 worth of goods. As such, the rule here states that the customer
must have spent $10000 on goods, thus deriving the information here that the
customer is a “Premium” customer. A derivation rule has an attribute strength
whose value ranges over strict and defeasible and it denotes the type of rule
to be associated to it when computed in defeasible logic.

A derivation rule has two immediate sub-elements, Condition (<Body>) and
Conclusion (<Head>); the latter being either an atomic predicate formula or a
sequence of obligations, and the former a conjunction of formulas [24], meaning
that derivation rules consist of one more conditions and a conclusion.

The ability to deal with violations and the obligations arising in response
to them is one of the key features in the representation of business contracts.
To this end the conclusion of a derivation rule corresponding to a normative
rule is a <Behaviour> element, defined as a sequence of <Obligation> and
<Permission> elements with the constraints that the sequence contains at most
one <Permission> element, and this element is the last of the sequence. This
construction is meant to simulate the behaviour of ⊗.

As we have alluded to in the previous section RuleML provides a semantically
neutral syntax for rules and different types of rules can be reduced to other types
and rules in RuleML can be mapped to native rules in other formalism. For the
relationships between RuleML and Defeasible Logic we will translate derivation
rules (<Imp>s) into rules in Defeasible Logic specifications. In this perspective a
derivation rule

<Imp label="r" strength="defeasible">

<Body>...</Body>

<Head>

<Behaviour>

<Obligation>A1</Obligation>

...

<Deontic>An</Deontic>

</Behaviour>

</Head>

</Imp>

is transformed into a defeasible rule

r : body⇒ OA1 ⊗ · · · ⊗XAn

where X is the translation of the <Deontic> (meta) element.

154 Guido Governatori and Duy Pham Hoang

We give now an example of a rule based on the following contract clause

6.1 The payment terms shall be in full upon receipt of invoice. Interest
shall be charged at 5 % on accounts not paid within 7 days of the invoice
date.

<Imp label="6.1" strength="defeasible">

<Body><And>

<Atom><Rel>Invoice</Rel>

<Var>InvoiceDate</Var>

<Var>Amount</Var></Atom>

</And>

</Body>

<Head>

<Behaviour>

<Obligation subject="Purchaser"

beneficiary="Supplier">

<Rel>PayInFullWithin7Days</Rel>

<Var>InvoiceDate</Var>

<Var>Amount</Var>

</Obligation>

<Obligation subject="Purchaser"

beneficiary="Supplier">

<Rel>PayWithInterest</Rel>

<Var>Amount * 1.05</Var>

</Obligation>

</Behaviour>

</Head>

</Imp>

The new deontic tags in the DR-CONTRACT extended DTD in Figure 2
–<Reparation>, <Penalty> and <Violation>– do not increase the expressive

<!ELEMENT And (Atom|Obligation|Permission|Violation)*>

<!ELEMENT Violation EMPTY>

<!ATTLIST Violation rule IDREF #REQUIRED>

<!ELEMENT Behaviour ((Obligation+,Reparation)|(Obligation*,Permission?))>

<!ELEMENT Reparation EMPTY>

<!ATTLIST Reparation penalty IDREF #REQUIRED>

<!ELEMENT Penalty ((Obligation+,Reparation)|(Obligation*,Permission?))>

<!ATTLIST Penalty label ID #REQUIRED>

Fig. 2. DR-CONTRACT Extended DTD

power of the language but are included as convenient shortcuts. It is possible
to express a violation explicitly by saying that a particular rule is triggered in
response to a violation (i.e., when an obligation is not fulfilled) . However, it can
be convenient to have facilities to represent violations directly –just look at the

A Semantic Web Based Architecture for e-Contracts in Defeasible Logic 155

formulation of Clause 5.3. In general a violation can be one of the conditions
that trigger the application of a rule. Accordingly a <Violation> element can be
included in the body of a rule. A violation cannot subsist without a rule that is
violated by it. Hence the attribute rule is a reference to the rule that has been
violated. Many contract languages [15, 19] contain similar constructions. The
activation of such constructions/processes requires the generation of a violation
event/literal. On the contrary our approach does not require it. All we have to
do is to check for a sequence of literals joined with the ⊗ operator where the
initial part of the sequence is not satisfied.

A <Violation> occurs in the body of rule and the rule attribute refers to the
violated rule. Every <Violation> element can be replaced by the conjunction of
the elements in the <Body> of the violated rule, i.e., the rule the rule attribute
refers to, plus the negation of the un-modalised elements of the elements in the
<Head> of the violated rule.

<Imp label="v">

<body>B1</body>

<head>

<Behaviour>

<Obligation>A1</Obligation>

...

<Obligation>An</Obligation>

</Behaviour>

</head>

</Imp>

<Imp label="r">

<body>

<And>

B2

<Violation rule="v"/>

</And>

</body>

<head>

<Behaviour>

<Obligation>C1</Obligation>

...

<Deontic>Cm</Deontic>

</Behaviour>

</head>

</Imp>

From the above RuleML code we generate two rules in DDLV, namely

v : B1 ⇒ OA1 ⊗ · · · ⊗OAn,

r : B1, B2,¬A1, . . . ,¬An ⇒ OC1 ⊗ · · · ⊗XCm.

Eventually the two rules can be combined via the schema (1) in

vr : B1, B2 ⇒ OA1 ⊗ · · · ⊗OAn ⊗OC1 ⊗ · · · ⊗XCm.

In some cases one might have recurrent general penalties and it may be con-
venient to state them once and refer back to them when they are called. To
deal with this case we introduce two additional elements <Reparation> and
<Penalty>. A <Reparation> element is just an empty element with a reference
to a <Penalty> element that can occur only after an obligation in a <Behaviour>
element, where a <Penalty> element is a premiseless rule with a normative head
that is triggered only when its corresponding violations are raised.

156 Guido Governatori and Duy Pham Hoang

For example given the following fragment of a contract

<Imp label=’r’>

<body>...</body>

<head>

<Behaviour>

<Obligation>A1</Obligation>

...

<Obligation>An</obligation>

<Reparation penalty="p"/>

</Behaviour>

</head>

</Imp>

<Penalty label="p">

<Obligation>B1</Obligation>

...

<Deontic>Bm</Deontic>

</Penalty>

the rule corresponding to it is

r : body⇒ OA1 ⊗ · · · ⊗OAn ⊗OB1 ⊗ · · · ⊗XBm.

4 DR-CONTRACT System Architecture

The system architecture of DR-CONTRACT is inspired by the system archi-
tecture of the family of DR-DEVICE applications [5, 6, 21] and consists of four
main modules (see Figure 3):

Fig. 3. DR-CONTRACT System Architecture

1. A Rule Parser to transform a DR-CONTRACT compliant document (a con-
tract) into a theory to be passed to the next module. The parser is based
on the XML processor and it is rather similar in nature to the Logic Loader
module of the DR-Device family applications [5, 6, 21].

A Semantic Web Based Architecture for e-Contracts in Defeasible Logic 157

2. A DDLV normaliser. The normaliser takes as input a DDLV theory (obtained
from the previous step) and iteratively merges rules in the theory according
to the inference rule 1 and then removes rules subsumed by a more general
rule according to Definition 1. It repeats the cycle till it reaches the fixed-
point of such a construction (which is guaranteed to exist and to be unique
[11]). Once a theory has been normalised the normal form is saved to a
repository (for faster loading in successive calls), and the normalised theory
NDDLV is passed to the DDLV engine. In addition the normaliser applies
a transformation that removes superiority relation by compiling it into new
rules (the technique used here is similar to that of [2]).

3. The RDF loader downloads/queries the input documents, including their
schemata, and it translates the RDF descriptions into fact objects accord-
ing to the RDF-NDDLV translation schema based on the DR-CONTRACT
DTD.

4. The NDDLV inference engine consists of two components:
– The Rule Loader compiles the rules in a NDDLV theory in objects. We

distinguish two types of objects: Rules and Literals or atoms. Each rule
object has associated to it a list of (pointers to) modal literals (corre-
sponding to head of the rule) and a set of (pointers to) modal literals
implemented as an hash table. Each atom object has associated to it four
hash tables: the first with pointers to the rules where the atom occurs
positively in the head, the second with pointers to the rules where the
atom occurs negatively in the head, the third with pointers to the rules
where the atom occurs positively in the body and the last with pointers
where the atom occurs negatively in the body.

– The Inference Engine is based on an extension of the Delores algo-
rithm/implementation proposed in [18] as a computational model of Ba-
sic Defeasible Logic. In turn:
• It asserts each fact (as an atom) as a conclusion and removes the

atom from the rules where the atom occurs positively in the body,
and it “deactivates” the rules where the atom occurs negatively in
the body. The complement of the literal is removed from the head
of rules where it does not occur as first element. The atom is then
removed from the list of atoms.

• It scans the list of rules for rules where the body is empty. It takes
the first element of the head and searches for rule where the negation
of the atom is the first element. If there are no such rules then, the
atom is appended to the list of facts, and removed from the rules

• It repeats the first step.
• The algorithm terminates when one of the two steps fails. On termi-

nation the algorithm outputs the set of conclusions4.

4 Notice that the algorithm runs in linear time. Each atom/literal in a theory is pro-
cessed exactly once and every time we have to scan the set of rules, thus the com-
plexity of the above algorithm is O(|L| ∗ |R|), where L is the set of distinct modal
literals and R is the set of rules

158 Guido Governatori and Duy Pham Hoang

5. Finally the conclusions are exported either to the user or to a monitoring
contract facility such as BCL [17, 19] as an RDF/XML document through
an RDF extractor.

5 Conclusion and Related Works

In this paper we have presented a system architecture for a Semantic Web based
system for reasoning about contracts. The architecture is inspired by the system
architecture of the DR-DEVICE family of applications. The main differences
between our approach and the DR-DEVICE is in the use of an extended variant
of Defeasible Logic. The extensions are in the use of modal operator and a non
classical operator for violations. The same difference applies for the SweetDeal
approach by Grosof [14, 15]. We have also argued that the extension with modal
(deontic) operators is not only conceptually sound but also necessary to capture
the semantics of contracts. In the same way the implementation of the inference
engine is an extension of the algorithm used by Delores [18] to cope with deontic
operators and the ⊗ operator.

The handling of temporal aspects is a very delicate matter in contract mon-
itoring. The current architecture does not cover temporal reasoning. However,
[12] proposes an extension of Defeasible Logic that can represent and reason with
temporalised normative positions. In particular the framework offers facilities to
initiate and terminate obligations, permissions, prohibitions and other complex
normative positions. We have planned to study how to efficiently incorporate
such features in our Deontic Defeasible Logic of Violations.

Currently we have implemented prototypes of the inference engine in Python
and Java, and experimental results show that the Python implementation is able
to deal with some of the benchmark theories of [18] with theories in some case
with over 50000 rules.

Acknowledgements

This work was partially supported by the UQ Early Career Researcher Grant
no. 2004001458 on “A System for Automated Agent Negotiation with Defeasible
Logic-Based Strategies”.

References

1. G. Antoniou, D. Billington, G. Governatori, and M. Maher. A flexible framework
for defeasible logics. In (AAAI-2000), 401–405. AAAI/MIT Press, 2000.

2. G. Antoniou, D. Billington, G. Governatori, and M. Maher. Representation results
for defeasible logic. ACM Trans. on Computational Logic, 2(2):255–287, 2001.

3. G. Antoniou, D. Billington, G. Governatori, M. Maher, and A. Rock. A family
of defeasible reasoning logics and its implementation. In W. Horn, editor, ECAI
2000, 459–463. IOS Press. 2000.

A Semantic Web Based Architecture for e-Contracts in Defeasible Logic 159

4. G. Antoniou, M. Maher, and D. Billington. Defeasible logic versus logic program-
ming without negation as failure. J. of Logic Programming, 41(1):45–57, 2000.

5. N. Bassiliades, G. Antoniou, and I. Vlahavas. A defeasible logic reasoner for the
semantic web. In G. Antoniou and H. Boley, editors, RuleML 2004, LNCS 3323,
49–64. Springer-Verlag, 2004.

6. N. Bassiliades, G. Antoniou, and I. Vlahavas. DR-DEVICE: A defeasible logic sys-
tem for the Semantic Web. In H.J. Ohlbach and S. Schaffert, editors, 2nd PPSWR,
LNCS 3208, 134–148. Springer-Verlag, 2004.

7. H. Boley, S. Tabet, and G. Wagner. Design rationale for ruleml: A markup language
for semantic web rules. In I.F. Cruz, S. Decker, J. Euzenat, and D.L. McGuinness,
editors, SWWS’01, 381–401, 2001.

8. G. Governatori. Representing business contracts in RuleML. Int. J. of Cooperative
Information Systems, 14(2-3):181–216, 2005.

9. G. Governatori, M. Maher, D. Billington, and G. Antoniou. Argumentation se-
mantics for defeasible logics. J. of Logic and Computation, 14(5):675–702, 2004.

10. G. Governatori and A. Rotolo. Defeasible logic: Agency, intention and obligation.
In A. Lomuscio and D. Nute, editors, Deontic Logic in Computer Science, LNAI
3065, 114–128. Springer-Verlag, 2004.

11. G. Governatori and A. Rotolo. Logic of Violations: A Gentzen system for reasoning
with contrary-to-duty obligations. Australasian Journal of Logic, 2005.

12. G. Governatori, A. Rotolo, and G. Sartor. Temporalised normative positions in
defeasible logic. In A. Gardner, editor, 10th ICAIL, 25–34. ACM Press, 2005.

13. J.J. van Griethuysen, editor. Concepts and Terminology for the Conceptual Schema
and the Information Base. Publ. nr. ISO/TC97/SC5/WG3-N695, ANSI, 11 West
42nd Street, New York, NY 10036, 1982.

14. B.N. Grosof. Representing e-commerce rules via situated courteous logic programs
in RuleML. Electronic Commerce Research and Applications, 3(1):2–20, 2004.

15. B.N. Grosof and T. C. Poon. SweetDeal: representing agent contracts with ex-
ceptions using XML rules, ontologies, and process descriptions. In 12th WWW,
340–349. ACM Press, 2003.

16. R.M. Lee. A logic model for electronic contracting. Decision Support Systems,
4:27–44, 1988.

17. P. Linington, Z. Milosevic, J. Cole, S. Gibson, S. Kulkarni, and S. Neal. A uni-
fied behavioural model and a contract for extended enterprise. Data & Knowledge
Engineering, 51:5–29, 2004.

18. M. Maher, A. Rock, G. Antoniou, D. Billington, and T. Miller. Efficient defeasible
reasoning systems. Int. J. of AI Tools, 10(4):483–501, 2001.

19. Z. Milosevic, S. Gibson, P.F. Linington, J. Cole, and S. Kulkarni. On design and
implementation of a contract monitoring facility. In 1st IWEC, 62–70. IEEE Press,
2004.

20. RuleML. The Rule Markup Initiative, 1 September 2005.
21. T. Skylogiannis, G. Antoniou, N. Bassiliades, and G. Governatori. DR-

NEGOTIATE – a system for automated agent negotiation with defeasible logic-
based strategies. In EEE’05, 44–49. IEEE Press, 2005.

22. L. van der Torre and Y.-H. Tan. The many faces of defeasibility. In D. Nute, editor,
Defeasible Deontic Logic, 79–121. Kluwer, 1997.

23. G. Wagner. How to design a general rule markup language. In Proceedings of XML
Technology for the Semantic Web (XSW 2002), LNI 14, 19–37. GI, 2002.

24. G. Wagner, S. Tabet, and H. Boley. MOF-RuleML: The abstract syntax of RuleML
as a MOF model. In OMG Meeting, Boston, 2003.

Merging and Aligning Ontologies in dl-Programs

Kewen Wang1, Grigoris Antoniou2, Rodney Topor1, and Abdul Sattar1

1 Griffith University, Australia
{k.wang,r.topor,a.sattar}@griffith.edu.au

2 University of Crete, Greece
ga@csd.uoc.gr

Abstract. The language of dl-programs is a latest effort in developing an ex-
pressive representation for Web-based ontologies. It allows to build answer set
programming (ASP) on top of description logic and thus some attractive features
of ASP can be employed in the design of the Semantic Web architecture. In this
paper we first generalize dl-programs by allowing multiple knowledge bases and
then accordingly, define the answer set semantics for the dl-programs. A novel
technique called forgetting is developed in the setting of dl-programs and applied
to ontology merging and aligning.

1 Introduction

A key part of the Semantic Web architecture is designing a set of languages so that
web-based ontologies can be represented and reasoned easily and correctly. The Web
Ontology Language (OWL) is the latest standard recommended by the World Wide Web
Consortium (W3C). The design and standardization of OWL is largely influenced by
description logic [2]. As observed by many researchers, for example, [1, 7, 10, 11, 16],
OWL is still too limited in representing, reasoning about and merging ontologies on the
Web. In particular, the following three issues are still far from solved:

– How to represent commonsense knowledge in ontologies.
– How to represent and reason with multiple ontologies.
– How to effectively reuse and share ontologies in the Semantic Web.

Many researchers believe that the next step in the development of the Semantic Web
is to realize the logic layer. This layer will be built on top of the ontology layer and
provide sophisticated representation and reasoning abilities. Given that most current
reasoning systems are based on rules, it is a key task to combine rules with ontolo-
gies. The RuleML initiative (http://www.ruleml.org) is considered to be a first attempt
in this direction. Theoretically, the problem of integrating the ontology layer with the
logic layer is reduced to combine rule-based systems with description logics. Recently,
a number of attempts at combining description logic with logic programs have been
made, for example, [5, 11]. A more recent work in [7] aimed to build nonmonotonic
logic programs on the top of description logic (or OWL) by combining answer set pro-
gramming (ASP) and description logic. In particular, the notion of dl-atoms allows to
query and virtually align the dl-knowledge base.

ASP is a paradigm of logic programming under the answer sets [9] and it is becom-
ing one of the major tools for knowledge representation due to its simplicity, expressive

A. Adi et al. (Eds.): RuleML 2005, LNCS 3791, pp. 160–171, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Merging and Aligning Ontologies in dl-Programs 161

power, connection to major nonmonotonic logics and efficient implementations, such
as DLV [6] and Smodels [14] However, some aspects of dl-programs introduced in [7]
should be extended and improved:

– dl-programs can only query or align a fixed dl-knowledge base.
– there is no construct provided in dl-programs so that concepts from different on-

tologies can be used. This issue can be reduced to the problem of how to merge or
align ontologies.

– The operator� provides a means to constrain some objects from a concept but there
is no construct for discarding a concept. For example, suppose we want to define
a concept of Top100Singers. We may wish to use an ontology “MUSICIAN” on
the Web and thus have to import the ontology. However, we do not want to import
some irrelevant concepts like “Violinist”.

In this paper we first generalize the language of dl-programs and its semantics. Then
the notion of forgetting [17] is introduced into dl-programs and thus show how to use
this technique to merge and align different ontologis in dl-programs.

2 Preliminaries

The language for representing ontologies in this paper is a combination of a simple
description logic and extended logic programs. In this section we briefly recall some
background knowledge of logic programs, description logic, and their relation to Web
markup languages.

2.1 Description Logic and Web Markup Languages

Although the Web is a great success, it is basically a collection of human-readable pages
that cannot be automatically processed by computer programs.The Semantic Web is to
provide tools for explicit markup of Web content and to help create a repository of
computer-readable information. RDF is a language that can represent explicit metadata
and separate content of Web pages from their structure. However, as noted by the W3C
Web Ontology Working Group (http://www.w3.org/2001/sw/WebOnt/) , RDF/RDFS is
too limited to describe some application domains which require the representation of
ontologies on the Web and thus, a more expressive ontology modeling language was
needed. This led to a number of ontology languages for the Web including the well-
known DAML+OIL [3] and OWL [4]. In general, if a language is more expressive,
then it is less efficient. To suit different applications, the OWL language provides three
species for users to get a better balance between expressive power and reasoning effi-
ciency: OWL Full, OWL DL and OWL Lite.

The cores of these Semantic Web languages are description logics, and in fact, the
designs of OWL and its predecessor DAML+OIL were strongly influenced by descrip-
tion logics, including their formal semantics and language constructors. In these Se-
mantic Web languages, an ontology is represented as a knowledge base in a description
logic.

Description logics are a family of concept-based knowledge representation lan-
guages [2]. They are fragments of first order logic and are designed to be expressively
powerful and have an efficient reasoning mechanism.

162 Kewen Wang et al.

A dl-knowledge base L has two components: a TBox and an ABox.
The TBox specifies the vocabulary of an application domain, which is actually a

collection of concepts (sets of individuals) and roles (binary relations between individ-
uals). So the TBox can be used to assign names to complex descriptions. For example,
we may have a concept named area which specifies a set of areas in computer science.
Suppose we have another concept expert which is a set of names of experts in com-
puter science. We can have a role expertIn which relates expert to area. For instance,
expertIn(John, “Semantic Web”) means “John is an expert in the Semantic Web”.

The ABox contains assertions about named individuals.
A dl-knowledge base can also reason about the knowledge stored in the TBox and

ABox, although its reasoning ability is a bit too limited for some practical applications.
For example, the system can determine whether a description is consistent or whether
one description subsumes another description.

The knowledge in both the TBox and ABox are represented as formulas of the
first order language but they are restricted to special forms so that efficient reasoning
is guaranteed. For our purpose, we deal with a simple description logic called SAL.
The formulas in SAL are called concept descriptions. Elementary descriptions consists
of both atomic concepts and atomic roles. Complex concepts are built inductively as
follows (in the rest of this subsection, A is an atomic concept, C and D are concept de-
scriptions, R is a role): A (atomic concept);
 (universal concept);⊥ (bottom concept);
¬A (atomic negation); C � D (intersection); C � D (union). Note that we can use �
and � to represent ∀R.C (value restriction) and ∃R.C (existential quantification).

To define a formal semantics of concept descriptions, we need the notion of interpre-
tation. An interpretation I of SAL is a pair (Δ, ·I) where Δ is a non-empty set called
the domain and ·I is an interpretation function which associates each atomic concept A
with a subset AI of Δ and each atomic role R with a binary relation RI ⊆ Δ×Δ. The
function ·I can be naturally extended to complex descriptions:

–
I = Δ
– ⊥I = ∅
– (¬A)I = Δ−AI
– (C �D)I = CI ∩DI
– (C �D)I = CI ∪DI

A terminology axiom is of the form C � D or C ≡ D where C and D are concepts
(roles). An interpretation I satisfies C � D iff CI ⊆ DI ; it satisfies C ≡ D iff
CI = DI .

2.2 Extended Logic Programs

We deal with extended logic programs [9] whose rules are built from some atoms where
default negation not and strong negation ¬ are allowed. A literal is either an atom a or
its strong negation ¬a1. For any atom a, we say a and ¬a are complementary literals.

If l is a literal, then not l is called a negative literal. For any set S of literals,
not S = {not l | l ∈ S}.

1 We use the same sign “¬” to represent the negation in description logic and the strong negation
in extended logic programs

Merging and Aligning Ontologies in dl-Programs 163

An extended logic program is a finite set of rules of the following form

l0 ← l1, . . . , lm,not lm+1, . . . ,not ln (1)

where l0 is either a literal or empty, each li is a literal for i = 1, . . . , n, and 0 ≤ m ≤ n.
If l0 is empty, then the rule is a constraint.

If a rule of form (1) contains no default negation, it is called positive; P is a positive
program if every rule of P is positive.

If a rule of form (1) contains only negative literals, it is called negative; P is a
negative program if every rule of P is negative.

Given a rule r of form (1), head(r) = l0 and body(r) = body+(r) ∪ not body−(r)
where body+(r) = {l1, . . . , lm}, body−(r) = {lm+1, . . . , ln}. The set head(P) con-
sists of all literals appearing in rule heads of P .

In the rest of this section we assume that P is an extended logic program and S
is a set of ground literals. A rule r in P is satisfied by S, denoted S |= r, iff “if
body+(r) ⊆ S and body−(r) ∩ S = ∅, then head(r) ∈ S”. S is a model of P , denoted
S |= P if every rule of P is satisfied by S.

The Answer Set Semantics. The reduct of logic program P on a set S of literals,
written PS , is obtained as follows:

– Delete every r from P such that there is a not q ∈ body−(r) with q ∈ S.
– Delete all negative literals from the remaining rules.

Notice that PS is a set of rules without any negative literals. Thus PS may have no
model or have a unique minimal model, which coincides with the set of literals that can
be derived by resolution.

S is an answer set of P if S is the minimal model of PS .
A logic program may have zero, one or more answer sets. We use ‖ P ‖ to denote

the collection of answer sets of P .
A program is consistent if it has at least one answer set.
Two logic programs P and P ′ are equivalent, denoted P ≡ P ′, if they have the

same answer sets.
As usual, BP is the Herbrand base of logic program P , that is, the set of all (ground)

literals in P .

3 Answer Sets for dl-Programs

The dl-program introduced in this section is a generalization of the description logic
program introduced in [7]. This language is a combination of the description logic SAL
and extended logic programs, which allows to build logic programs on top of description
logic (and thus some description logic-based web ontology languages like OWL). We
will also define the answer set semantics for dl-programs.

3.1 Syntax

Informally, a dl-program consists of some dl-knowledge bases L = {L1, . . . , Ls} and
a logic program P whose rule bodies may contain queries to some knowledge base (or
its update) in L.

164 Kewen Wang et al.

A dl-query Q[t] is either a concept, or its negation, or a role, or its negation where
t is a term. A dl-atom has the form DL[L, S1 ◦ P1, . . . , Sm ◦ Pm, Q](t) where L is a
dl-knowledge base, each Si is either a concept or a role, each Pi is a predicate; each
◦ is either ⊕ or �, and Q[t] is a dl-query. Intuitively, Si ⊕ Pi and Si � Pi implement
views of inserting and deleting the objects satisfying the property Pi (see Section 3.2
for formal definition).

Note that we do not include the third operator in [7] because it can be represented
by �. Thus we do not need the notion of monotonicity of dl-atoms.

In the ontology MUSICIAN , if we are not interested in Jazz music, dl-atom
DL[Singer � jazz(x), Cui] can be used. When there is no confusion, the L in the
dl-atom can be omitted.

Definition 1. A dl-rule is of the form

a ← b1, . . . , br,not br+1, . . . ,not bn

where a, br+1, . . . , bn are ordinary atoms; each of b1, . . . , br can be either an ordinary
atom or a dl-atom.

A dl-program is a pair (L, P) where L is a set of knowledge bases in description
logic and P is a finite set of dl-rules. Sometimes, we just say P is a dl-program if there
is no confusion caused.

The dl-programs here are a bit different from the programs introduced in [7] in that
a multitude of dl-knowledge bases can be queried in the same program. This is more
useful for Web-based ontology representation.

A dl-program (L, P) is positive if it does not contain negation as failure “not ”.
The dl-base DP of a dl-program P is defined as the set of all ground ordinary literals

in P (including the literals appearing in dl-atoms). A ground instance of a rule r ∈ P is
a rule obtained by replacing every variable in r by a constant. ground(P) denotes the
set of all ground instances of P . An interpretation I of a dl-program P is a consistent
set of literals in DP .

Let us consider the following example, which extends a scenario from http://www.kr.
tuwien.ac.at/staff/roman/asp sw/.

Example 1. Suppose that we have an ontology called ARTISTS. According to the on-
tology, Artists are either Singers or Painters. Some artists in the ontology are ”Jodie
Nash”, ”Vincent Van Gogh”, ”Luciano Pavarotti”.

We also have some rules for formalizing commonsense knowledge.
If someone is an artist and there is no evidence to show that he is a painter, then he

is not a painter:

r1 : ¬painter(A)← DL[L, artist](A),not painter(A)

Similarly, if someone is an artist and there is no evidence to show that he is a singer,
then he is not a singer:

r2 : ¬singer(A) ← DL[L, artist](A),not singer(A).

Merging and Aligning Ontologies in dl-Programs 165

Single out cases when an artist ought to be a painter or singer (but not necessarily
both)

r3 : painter(A)← DL[L⊕Wynne(X), artist](A), DL[L, painter](A)

Here L ⊕Wynne(X) guarantees that a Wynne Prize Winner is treated as an artist in
case he is not included the ontology.

r4 : singer(A) ← DL[L� Jazz(X), artist](A), DL[L, singer](A).

Here DL[L� Jazz(X) shows that we are not interested in Jazz music.
Suppose we have another dl-knowledge base L1 to check if A is a singer:

r5 : singer(A)← DL[L1, singer](A).

Let L be the ontology ARTIST and P = {r1, r2, r3, r4, r5}. Then ({L}, P) is a dl-
program.

The above dl-program intends to provide a compact representation for an ontology
which extends the following owl-ontology (we omit an ontology ”Awards” containing
”Wynne” and the class ”Jazz” of ”Artist”).

<!DOCTYPE rdf:RDF [] > <rdf:RDF
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns="file://artist#"
xmlns:base="file://artist">

<owl:Ontology rdf:ID="artist"/>

<owl:Class rdf:ID="Painter" />
<owl:Class rdf:ID="Singer" />

<owl:Class rdf:ID="Artist">
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Painter" />
<owl:Class rdf:about="#Singer" />

</owl:unionOf>
</owl:Class>

<Artist rdf:ID="Jodie_Nash"/>
<Painter rdf:ID="Vincent_Van_Gogh"/>
<Singer rdf:ID="Luciano_Pavarotti"/>

</rdf:RDF>

166 Kewen Wang et al.

3.2 Semantics

The semantics for a dl-program (L, P) is defined by the dl-answer sets, which modify
and generalize the corresponding notion in [7].

An interpretation I of a dl-program P is a consistent set of ground literals. So we
also allow dl-atoms in an interpretation.

The following interpretations for operators ⊕ and � is expected to remedy some
problems in the original definition.

Definition 2. Let I be an interpretation of the dl-program P and DL[L, S1 ◦ P1, . . . ,
Sm ◦ Pm, Q](t) is a ground dl-atom in P .

Denote�I the interpretation obtained from ·I by replacing (Si)I

– with (Si)I ∪ {t | Pi(t)} if Si is a concept and ◦ = ⊕;
– with (Si)I − {t | Pi(t)} if Si is a concept and ◦ = �;
– with (Si)I ∪ {(t1, t2) | Pi(t1, t2)} if Si is a role and ◦ = ⊕;
– with (Si)I − {(t1, t2) | Pi(t1, t2)} if Si is a role and ◦ = �;

The resulting semantic relation is denoted |=dl.
L |= DL[L, S1 ◦ P1, . . . , Sm ◦ Pm, Q](t) if and only if L |=dl Q(t).

Note that every positive dl-program P has a least model, denoted M(P). A general
dl-program can be reduced into a positive dl-program with respect to an interpretation.

Let P be a dl-program and I a set of atoms in P . The reduct P I of P on I is the
positive dl-program obtained from ground(P) by the following three ordered steps :

1. adding a rule Q(t) ← for each dl-atom d in the body of a rule in ground(P) such
that L |= Q(t), where Q(t) is the query for d;

2. deleting every rule r in ground(P) such that b ∈ I for some not b in the body of
r and

3. deleting every not b in the remaining rules.

The first condition says a dl-atom must be true in the model if it occurs in the
program and can be derived from the corresponding dl-knowledge base; the second and
third conditions are inherited from the definition of standard answer sets.

Definition 3. Let P be a dl-program and S a set of literals in P . S is a dl-answer set if
M(PS) = S.

A dl-answer set S is consistent if (1) there is no atom a such that both a and ¬a in S
and (2) if d is a dl-atom and d ∈ S, then L �|=dl ¬Q(t) where Q(t) is the query of d.

A dl-program may have zero, one or more dl-answer sets. We use ‖ P ‖ to denote
the collection of answer sets of P .

Consider the dl-program ({L, L1}, P) again where L1 is a dl-knowledge base which
includes “Tweety” as a singer. Then this dl-program has the unique dl-answer set which
contains some information like painter(V incentV anGogh) and singerTweety.

A dl-program is consistent if it has at least one consistent dl-answer set.
Two dl-programs P and P ′ are equivalent, denoted P ≡ P ′, if they have the same

dl-answer sets.

Merging and Aligning Ontologies in dl-Programs 167

4 Forgetting in dl-Programs

In this section we introduce the notion of forgetting for dl-programs. That is, we want
to define what it means to forget about (or discard) a literal l in a dl-program P . The
intuition behind the forgetting theory is to obtain a dl-program which is equivalent to
the original dl-program if we ignore the existence of the literal l.

4.1 Forgetting Ordinary Atoms

It is easy to forget a literal l in a set X of literals, that is, just remove l from X if l ∈ X .
This notion of forgetting can be easily extended to subsets. A set X ′ is an l-subset of X
if X ′−{l} ⊆ X−{l}. Similarly, a set X ′ is a true l-subset of X if X ′−{l} ⊂ X−{l}.

Two sets X and X ′ of literals are l-equivalent, denoted X ∼l X ′, iff (X −X ′) ∪
(X ′ −X) ⊆ {l}.

Given a consistent dl-program P and an ordinary ground literal l, we could define
a result of forgetting about l in P as a dl-program P ′ whose dl-answer sets are exactly
‖ P ‖ −l = {X − {l} | X ∈‖ P ‖}. However, such a notion of forgetting cannot even
guarantee the existence for some simple programs as illustrated in [17]. So we need a
notion of minimality of dl-answer sets which can naturally combine the definition of
dl-answer sets, minimality and forgetting together.

Definition 4. Let P be a consistent dl-program, l an ordinary ground literal in P and
X a set of ground literals.

1. We say X is l-minimal in a collection S of sets of ground literals if X ∈ S and
there is no X ′ ∈ S such that X ′ is a true l-subset of X . In particular, if SP is the
set of models of P , then we say X is an l-minimal model of dl-program P if X is a
model of P and it is l-minimal in SP .

2. X is a dl-answer set of P by forgetting l (briefly, l-answer set) if X is the l-minimal
model of the reduct PX .

The above definition is a filter for dl-answer sets rather than a new semantics.
Having the notion of minimality about forgetting an ordinary ground literal, we are

now in a position to define the result of forgetting about a literal in a dl-program.

Definition 5. Let P be a consistent dl-program and l be an ordinary ground literal.
A dl-program P ′ is a result of forgetting about l in P if the following conditions are
satisfied:

1. DP ′ ⊆ DP − {l}.
2. For any set X ′ of ground literals, X ′ is a dl-answer set of P ′ iff there is an l-answer

set X of P such that X ′ ∼l X .

Notice that the first condition implies that l does not appear in P ′. In particular, no new
symbol is introduced in P ′.

Suppose we have a dl-knowledge base L which contains some concepts “bird”,
“parrot” and “penguin”. An ontology “BIRD” is specified as a dl-program (L, P) where

168 Kewen Wang et al.

P = P1 ∪ P2, P2 contains no information about “penguin” and P1 consists of the
following rules:

bird(A) ← penguin(A)
flies(A)← bird(A),not penguin(A)
¬flies(A)← penguin(A)

penguin(Tweety)←
If we do not want to import the concept “penguin”, we can discard the information on
“penguin” by forgetting and get forget((L, P), penguin) = {flies(A)← bird(A)} ∪
P2.

A dl-program P may have different dl-programs as results of forgetting about the
same ordinary ground literal l. However, it follows from the above definition that any
two results of forgetting about the same literal in P are equivalent under dl-answer sets.

Proposition 1. Let P be a dl-program and l an ordinary ground literal in P . If P ′ and
P ′′ are two results of forgetting about l in P , then P ′ and P ′′ are equivalent (i.e. they
have the same dl-answer sets).

We use forget(P, l) to denote the result of forgetting about l in P .
To compute forget(P, l), we can easily adapt the corresponding algorithms in [17]

to dl-programs.
Similarly, we can forget a set of ordinary literals F in a dl-program P and thus

define forget(P, F).

4.2 Forgetting dl-Atoms

To discard or forget an unwanted ground dl-atom d in a dl-program P , we need to
remove all the effects caused by d in both P and L. This can be accomplished by the
following steps:

Step 1. Forget d in dl-knowledge base L by removing all those concepts, roles and
terminology axioms of L in which Q(t) occurs. Denote the resulting dl-knowledge
base L− d.

Step 2. Replace each occurrence of the dl-atom d by d′ in P where d′ is obtained from
d by replacing L with L− d. The resulting dl-program is denoted P ′.

Step 3. Forget the dl-atom d′ in P ′ by treating d′ as an ordinary atom.

5 Merging and Aligning Ontologies

In recent years, researchers have developed many ontologies. These different groups
of researchers are now beginning to work with each other, so they must bring together
ontologies from different sources. Approaches to this problem usually fall into one of
the two categories:

– merging the ontologies to create a single coherent ontology.
– aligning the ontologies by establishing links between them to reuse information

from one another.

Merging and Aligning Ontologies in dl-Programs 169

In this section we show how to merge and align ontologies in dl-programs by forgetting.
For simplicity, throughout the discussion, we assume that only two ontologies are

being merged or aligned.

5.1 Merging Ontologies by Forgetting

When two ontologies are merged, a new ontology is created, which is a merged version
of the original ontologies. Usually, overlapping domains are kept in the merged ontol-
ogy. Some algorithms like SMART [15] tried to automate parts of the merging process
of ontologies. However, their languages are relatively simple and thus reasoning is al-
most not involved.

As shown in the algorithm of SMART, those concepts and roles to be merged can
be specified by users and/or automatic processes. For instance, Linguistically similar
names can be found automatically. Linguistic similarity can be determined in a couple
of different ways including by synonymy or shared substrings.

Let O1 and O2 be two ontologies expressed as dl-programs. Suppose we have deter-
mined two sets of literals F1 and F2 for O1 and O2, respectively. F1 and F2 correspond
to certain concepts that need to be handled separately in the merging. A literal is put
into F1 or/and F2 due to a number of reasons. However, in an expressive language like
dl-programs, these two concepts may be related to some other concepts by terminology
axioms. Thus we may have to deal with some issues related to reasoning like conflict
resolving and consistency maintaining. Another possibility is that some concepts are
useless and we want to discard them as mentioned in the introduction. The second sce-
nario can be satisfactorily handled by the following algorithm.

Algorithm 1 Input: Two ontologies O1 and O2 (in dl-programs).
Output: A merged ontology O.
Process:

Step 1. Determine the sets F1 and F2 of literals that need to be handled separately.
Step 2. Compute forget(Oi, Fi) for i = 1, 2.
Step 3. F1 and F2 are handled by user and thus O0 is obtained.
Step 4. Merged ontology: O = O0 ∪ forget(O1, F1) ∪ forget(O2, F2).

As for Step 3, it depends on the application. There may be a couple of possible different
approaches. For example, we may remove some literals from F1 and/or F2; we may
replace some literal of one Fi with a literal in the other; or we may even replace two
literals li ∈ Fi, i = 1, 2 with a new literal.

5.2 Aligning Ontologies by Forgetting

In alignment, the two original ontologies persist but one of the aligned ontologies (say
O1, more general) is preferred over another (say O2, more specific), with links estab-
lished between their concepts and roles. These links can be represented as a mapping or
a view (virtual ontology). However, the domain-specific ontology O2 does not become
part of the more general ontology O1; rather O2 is a separate ontology that includes
O1 and uses O1’s top-level distinctions. For example, many ontologies in the domain

170 Kewen Wang et al.

of military are structured around a central ontology, the CYC knowledge base [13].
The developers of these domain-specific ontologies then align their ontologies to CYC
by establishing links into CYC’s upper- and middle-level ontologies [8]. However, in
many cases the alignment cannot be done by only some simple links. As in the case of
merging, conflicts and/or inconsistencies may arise when aligning two ontologies. In
particular, we have to deal with their subsumption relations. For example, if we have
two ontologies ARTIST, where a concept “Singer” is included, and MUSICIAN, where
a concept “singer” is included, we may wish to merge “singer” and “Singer”. Moreover,
ARTIST is established by the Australian Association of Arts and MUSICIAN by the
College of Music at Griffith University. Since both “Singer” and “singer” may be re-
lated to some other concepts in their ontologies by roles and axioms, we cannot simply
replace “singer” by “Singer”.

By employing the notion of forgetting, the tasks of conflict resolution and consis-
tency maintenance during aligning can be done automatically.

Algorithm 2 Input: Two ontologies O1 and O2 (in dl-programs) where O1 is preferred
to O2.
Output: Aligned ontology O.
Process:

Step 1. Determine the set F2 of atoms that will be aligned in O2.
Step 2. Compute forget(O2, F2).
Step 3. Aligned ontology: O = O1 ∪ forget(O2, F2).

6 Conclusions

The language of dl-programs is a latest effort in developing an expressive representation
for Web-based ontologies. It allows to build answer set programming (ASP) on top of
description logic and thus some attractive features of ASP can be employed in the de-
sign of the Semantic Web architecture. Often, an ontology on the Web is based on more
than one knowledge base. In this paper we have generalized dl-programs by allowing
multiple knowledge bases and then accordingly, defined the answer set semantics for
the dl-programs. The notion of forgetting has been proved an extremely useful tech-
nique for updating knowledge bases, constraint problem solving and query answering
[12, 17, 18]. In this paper we have imported the notion of forgetting into dl-programs.
We have also applied the technique of forgetting to two important tasks of representing
ontologies, that is, merging and aligning ontologies. In particular, we have introduced
two algorithms for these two tasks. This is only preliminary report of our work. There
are a couple of issues to be pursued in the future:

– More constructs in ASP can be introduced into dl-programs, like disjunction and
preference. The major difficulty in allowing these constructs is how to design cor-
responding algorithms for forgetting.

– It is also important to see if more expressive description logic can be allowed in the
forgetting of dl-programs.

– The two algorithms for merging and aligning ontologies need further improvement.
We are also planning to implement them and apply to some practical application
domains.

Merging and Aligning Ontologies in dl-Programs 171

References

1. G. Antoniou and G. Wagner. A rule-based approach to the semantic web (preliminary report).
In Proceedings of the 2nd Workshop on Rules and Rule Markup Languages for the Semantic
Web (RuleML2003), pages 111–120, 2003.

2. F. Baader, D. Calvanese, D.McGuinness, D. Nardi, and P. Patel-Schneider. The Description
Logic Handbook. Cambridge University Press, 2002.

3. D. Connolly, F. van Harmelen, I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider, and
L. A. Stein. Daml+oil reference description. http://www.w3.org/tr/2001/note-daml+oil-
reference-20011218.html, W3C Note, 18 December 2001.

4. M. Dean, D. Connolly, F. van Harmelen, J. Hendler, I. Horrocks, D. McGuin-
ness, P. Patel-Schneider, and L. Stein. Owl web ontology language reference.
http://www.w3.org/tr/2004/rec-owl-ref-20040210/, 3C Recommendation, 10 February 2004.

5. F. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrating datalog and descrip-
tion logics. Journal of Intelligent Information Systems, 10(3):227–252, 1998.

6. T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. A kr system dlv: Progress report,
comparisons and benchmarks. In Proceedings of the Sixth International Conference on the
Principles of Knowledge Representation and Reasoning, pages 406–417. Morgan Kaufmann
Publishers, 1998.

7. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer set program-
ming with description logics for the semantic web. In Proceedings of the 9th International
Conference on Principles of Knowledge Representation and Reasoning, pages 141–151,
2004.

8. R. Fikes and A. Farquhar. Large-scale repositories of highly expressive reusable knowledge.
IEEE Intelligent Systems, 14(2):73–79, 1999.

9. M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Proceedings of the
International Conference on Logic Programming, pages 579–597, 1990.

10. B. Grau, B. Parsia, and E. Sirin. Combining owl ontologies using e-connections. Techni-
cal Report TR-2005-01, University of Maryland Institute for Advanced Computer Studies
(UMIACS), January 2005.

11. B. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs: Combining logic
programs with description logics. In Proceedings of the 12th International World Wide Web
Conference, pages 48–57, 2003.

12. J. Lang, P. Liberatore, and P. Marquis. Propositional independence: Formula-variable inde-
pendence and forgetting. Journal of Artificial Intelligence Research, 18:391–443, 2003.

13. D. Lenat. Cyc: A large-scale investment in knowledge infrastructure. Communications of
ACM, 38(11):33–38, 1995.

14. I. Niemelä and P. Simons. Smodels: An implementation of the stable model and well-founded
semantics for normal logic programs. In J. Dix, U. Furbach, and A. Nerode, editors, Pro-
ceedings of the Fourth International Conference on Logic Programming and Nonmonotonic
Reasoning, pages 420–429. Springer-Verlag, 1997.

15. N. Noy and M. Musen. An algorithm for merging and aligning ontologies: Automation and
tool support. In Proceedings of the Workshop on Ontology Management at AAAI-99, 1999.

16. T. Swift. Deduction in ontologies via asp. In Proceedings of the 7th International Conference
on Logic Programming and Nonmonotonic Reasoning. Springer-Verlag, 2004.

17. K. Wang, A. Sattar, and K. Su. A theory of forgetting in logic programming. In Proceedings
of the AAAI National Conference on Artificial Intelligence. AAAI Press, 2005.

18. Y. Zhang, N. Foo, and K. Wang. Solving logic program conflicts through strong and weak
forgettings. In Proceedings of the International Joint Conference on Artificial Intelligence,
pages 627–632. the Professional Book Centre, USA, 2005.

A. Adi et al. (Eds.): RuleML 2005, LNCS 3791, pp. 172–186, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Visual Environment for Developing Defeasible Rule
Bases for the Semantic Web

Nick Bassiliades1, Efstratios Kontopoulos1, and Grigoris Antoniou2

1 Department of Informatics, Aristotle University of Thessaloniki
GR-54124 Thessaloniki, Greece

{nbassili,skontopo}@csd.auth.gr
2 Institute of Computer Science, FO.R.T.H., P.O. Box 1385, GR-71110, Heraklion, Greece

antoniou@ics.forth.gr

Abstract. Defeasible reasoning is a rule-based approach for efficient reasoning
with incomplete and inconsistent information. Such reasoning is useful for
many applications in the Semantic Web. However, the RuleML syntax of de-
feasible logic may appear too complex for many users. Furthermore, the inter-
play between various technologies and languages, such as defeasible reasoning,
RuleML, and RDF impose a demand for using multiple, diverse tools for build-
ing rule-based applications for the Semantic Web. In this paper we present
VDR-Device, a visual integrated development environment for developing and
using defeasible logic rule bases on top of RDF ontologies. VDR-Device inte-
grates in a user-friendly graphical shell, a visual RuleML-compliant rule editor
that constrains the allowed vocabulary through analysis of the input RDF on-
tologies and a defeasible reasoning system that processes RDF data and RDF
Schema ontologies.

1 Introduction
Although the Semantic Web represents a recent initiative to improve the potential of
the existing Web, it undoubtedly constitutes the inspiration for a vast number of ap-
plications. However, only the basic layers of the Semantic Web [9] have achieved a
certain level of maturity, with the highest one of them being the ontology layer, where
OWL has become the dominant standard. The next layers that have to become more
“concrete” are the logic and proof layers. Rule-based systems seem to possess a key
role in this affair, since (a) they can serve as extensions of, or alternatives to, descrip-
tion logic based ontology languages; and (b) they can be used to develop declarative
systems on top of (using) ontologies.

Defeasible reasoning [20], a member of the non-monotonic reasoning family, con-
stitutes a simple rule-based approach to reasoning with incomplete and conflicting
information. This approach offers two main advantages: (a) enhanced representational
capabilities, allowing one to reason with incomplete and contradictory information,
coupled with (b) low computational complexity compared to mainstream non-
monotonic reasoning. Defeasible reasoning can represent facts, rules as well as priori-
ties and conflicts among rules. Such conflicts arise, among others, from rules with
exceptions, which are a natural representation for policies and business rules [2]. And
priority information is often available to resolve conflicts among rules. Potential ap-
plications include security policies ([6], [17]), business rules [1], e-contracting [14],
personalization, brokering [5], bargaining and agent negotiations ([13], [21]).

A Visual Environment for Developing Defeasible Rule Bases for the Semantic Web 173

Although defeasible logic is certainly a very promising reasoning technology for
the Semantic Web, the development of rule-based applications for the Semantic Web
can be greatly compromised by two factors. First, the RuleML syntax of defeasible
logic is certainly too complicated for an end-user language. Furthermore, the interplay
between various technologies and languages involved in such applications, namely
defeasible reasoning, RuleML and RDF, impose a demand for using multiple, diverse
tools, which is a high burden even for the developer.

In this paper we present VDR-Device, a visual integrated development environ-
ment for developing and using defeasible logic rule bases on top of RDF ontologies.
VDR-Device integrates in a user-friendly graphical shell, a visual RuleML-compliant
rule editor and a defeasible reasoning system that processes RDF data and RDF
Schema ontologies [7]. The rule editor helps users to develop a defeasible logic rule
base by constraining the allowed vocabulary after analyzing the input RDF ontolo-
gies. Therefore, it removes from the user the burden of typing-in class and property
names and prevents potential semantical and syntactical errors. The visualization of
rules follows the tree model of RuleML.

VDR-DEVICE supports multiple rule types of defeasible logic, as well as priorities
among rules. Furthermore, it supports two types of negation (strong, negation-as-
failure) and conflicting (mutually exclusive) literals. DR-DEVICE has a RuleML-
compatible [10] syntax, which is the main standardization effort for rules on the Se-
mantic Web. Input and output of data and conclusions is performed through process-
ing of RDF data and RDF Schema ontologies. The system is built on-top of a CLIPS-
based implementation of deductive rules, namely the R-DEVICE system [8]. The core
of the system consists of a translation of defeasible knowledge into a set of deductive
rules, including derived and aggregate attributes.

The rest of the paper is organized as follows: Section 2 introduces a brokering
trade example that is used throughout the paper. Section 3 briefly introduces the se-
mantics of defeasible logics. Section 4 presents the architecture and functionality of
the VDR-Device system, including the visual rule editor and the core reasoning sys-
tem. Finally, section 5 discusses related work and section 6 concludes the paper and
discusses future work.

2 A Defeasible Logic Example

This section briefly presents an example of a defeasible logic program, adopted from
[4], that is used throughout this paper to explicate the workings of defeasible logic
and VDR-Device. The example deals with a brokered trade application that takes
place via an independent third party, the broker, and more specifically with apartment
renting. A number of available apartments reside in an RDF document along with the
properties of each apartment (Fig. 1). The potential user expresses his/her require-
ments in defeasible logic (as explained in the following section), regarding the apart-
ment he/she wishes to rent. The broker then tries to match the customer’s require-
ments and the apartment specifications and proposes a deal when both parties can be
satisfied by the trade.

The potential renter is looking for an apartment of at least 45m2 with at least 2 bed-
rooms. If it is on the 3rd floor or higher, the house must have an elevator. Also, pet
animals must be allowed. He is willing to pay $300 for a centrally located 45m2

174 Nick Bassiliades, Efstratios Kontopoulos, and Grigoris Antoniou

apartment, and $250 for a similar flat in the suburbs. In addition, he is willing to pay
an extra $5 per m2 for a larger apartment, and $2 per m2 for a garden. He is unable to
pay more than $400 in total. If given the choice, he would go for the cheapest option.
His 2nd priority is the presence of a garden; lowest priority is additional space.

<rdf:RDF ... xmlns:carlo="&carlo;" xmlns:carlo_ex="&carlo_ex;">
 <carlo:apartment rdf:about="&carlo_ex;a1">
 <carlo:bedrooms rdf:datatype="&xsd;integer">1</carlo:bedrooms>
 <carlo:central>yes</carlo:central>
 <carlo:floor rdf:datatype="&xsd;integer">1</carlo:floor>
 <carlo:gardenSize rdf:datatype="&xsd;integer">0</carlo:gardenSize>
 <carlo:lift>no</carlo:lift>
 <carlo:name>a1</carlo:name>
 <carlo:pets>yes</carlo:pets>
 <carlo:price rdf:datatype="&xsd;integer">300</carlo:price>
 <carlo:size rdf:datatype="&xsd;integer">50</carlo:size>
 </carlo:apartment>
 ...
</rdf:RDF>

Fig. 1. RDF document excerpt for available apartments

3 Defeasible Logics – An Introduction

A defeasible theory D (i.e. a knowledge base or a program in defeasible logic) con-
sists of three basic ingredients: a set of facts (F), a set of rules (R) and a superiority
relationship (>). Therefore, D can be represented by the triple (F, R, >).

In defeasible logic, there are three distinct types of rules: strict rules, defeasible
rules and defeaters. Strict rules are denoted by A p and are interpreted in the typi-
cal sense: whenever the premises are indisputable, so is the conclusion. An example
of a strict rule is: “Apartments are houses”, which, written formally, would become:

r1: apartment(X) house(X)

Defeasible rules are rules that can be defeated by contrary evidence and are de-
noted by A p. An example of such a rule is “Any apartment is considered to be
acceptable”, which becomes: r2: apartment(X) acceptable(X).

Defeaters, denoted by A ~> p, are rules that do not actively support conclusions,
but can only prevent some of them. In other words, they are used to defeat some de-
feasible rules by producing evidence to the contrary. An example of a defeater is:
r3: ¬pets(X),gardenSize(X,Y),Y>0 ~> acceptable(X)

which reads as: “If pets are not allowed in the apartment, but the apartment has a
garden, then it might be acceptable”. This defeater can defeat, for example, rule

r4: ¬pets(X) ¬acceptable(X).

Finally, the superiority relationship among the rule set R is an acyclic relation > on
R. For example, given the defeasible rules r2 and r4, no conclusive decision can be
made about whether the apartment is acceptable or not, because rules r2 and r4 con-
tradict each other. But if a superiority relation > with r4 > r2 is introduced, then r4

overrides r2 and we can indeed conclude that the apartment is considered unaccept-
able. In this case rule r4 is called superior to r2 and r2 inferior to r4.

A Visual Environment for Developing Defeasible Rule Bases for the Semantic Web 175

Another important element of defeasible reasoning is the notion of conflicting lit-
erals. In applications, literals are often considered to be conflicting and at most one of
a certain set should be derived. An example of such an application is price negotia-
tion, where an offer should be made by the potential buyer. The offer can be deter-
mined by several rules, whose conditions may or may not be mutually exclusive. All
rules have offer(X) in their head, since an offer is usually a positive literal. How-
ever, only one offer should be made; therefore, only one of the rules should prevail,
based on superiority relations among them. In this case, the conflict set is:

C(offer(x,y)) = { ¬offer(x,y) } ∪ { offer(x,z) | z ≠ y }

For example, the following two rules make an offer for a given apartment, based
on the buyer’s requirements. However, the second one is more specific and its conclu-
sion overrides the conclusion of the first one.

r5: size(X,Y),Y 45,garden(X,Z) offer(X,250+2Z+5(Y−45))
r6: size(X,Y),Y 45,garden(X,Z),central(X) offer(X,300+2Z+5(Y−45))
r6 > r5

4 VDR-Device System Architecture

The VDR-Device system consists of two primary components:

1. DR-Device, the reasoning system that performs the RDF processing and inference
and produces the results, and

2. DRREd (Defeasible Reasoning Rule Editor), the rule editor, which serves both as
a rule authoring tool and as a graphical shell for the core reasoning system.

Although these two subsystems utilize different technologies and were developed
independently, they intercommunicate efficiently, forming a flexible and powerful
integrated environment.

4.1 Architecture and Functionality of the Reasoning System

The core reasoning system of VDR-Device is DR-Device [6] and consists of two
primary components (Fig. 2): The RDF loader/translator and the rule loader/transla-
tor. The user can either develop a rule base (program, written in the RuleML-like
syntax of VDR-Device) with the help of the rule editor described in the following
sections, or he/she can load an already existing one, probably developed manually.
The rule base contains: (a) a set of rules, (b) the URL(s) of the RDF input docu-
ment(s), which is forwarded to the RDF loader, (c) the names of the derived classes to
be exported as results and (d) the name of the RDF output document.

The rule base is then submitted to the rule loader which transforms it into the na-
tive CLIPS-like syntax through an XSLT stylesheet and the resulting program is then
forwarded to the rule translator, where the defeasible logic rules are compiled into a
set of CLIPS production rules [11]. This is a two-step process: First, the defeasible
logic rules are translated into sets of deductive, derived attribute and aggregate attrib-
ute rules of the basic deductive rule language, using the translation scheme described
in [7]. Then, all these deductive rules are translated into CLIPS production rules ac-
cording to the rule translation scheme in [8]. All compiled rule formats are also kept

176 Nick Bassiliades, Efstratios Kontopoulos, and Grigoris Antoniou

in local files (structured in project workspaces), so that the next time they are needed
they can be directly loaded, improving speed considerably (running a compiled pro-
ject is up to 10 times faster).

RDF triple
Loader

RDF triple
Translator

Local Disk

Input RDF
document URI

ARP

RuleML/DR-DEVICE
Rulebase

CLIPS / COOL

RDF triples

COOL
Objects

RDF/XML
documents

RDF/XML

RDF/
N-triples

Results - Objects

Results -
RDF/XML

DR-DEVICE

RDF/XML
RDF/N-triple
Documents RDF

Extractor

Results - Objects CLIPS Rules

Logic Program

Loader

Xalan
XSLT

Processor

Local Disk

RuleML
documents

RuleML document

RuleML documents

DR-DEVICE
Rulebase

Rule Translator

Defeasible Rule
Translator

Deductive Rule
Translator

DR-DEVICE Rulebase

Results -
RDF/XML

DR-DEVICE
XSLT

stylesheet

Internet

DRREd USER

Fig. 2. The architecture of the core reasoning system

Meanwhile, the RDF loader downloads the input RDF documents, including their
schemas, and translates RDF descriptions into CLIPS objects [11], according to the
RDF-to-object translation scheme in [8], which is briefly described below.

The inference engine of CLIPS performs the reasoning by running the production
rules and generates the objects that constitute the result of the initial rule program.
The compilation phase guarantees correctness of the reasoning process according to
the operational semantics of defeasible logic. Finally, the result-objects are exported
to the user as an RDF/XML document through the RDF extractor. The RDF docu-
ment includes the instances of the exported derived classes, which have been proved.

The Object-Oriented RDF Data Model
The DR-Device system employs an OO RDF data model, which is different from the
established triple-based data model for RDF. The main difference is that DR-Device
treats properties both as first-class objects and as normal encapsulated attributes of
resource objects. In this way properties of resources are not scattered across several
triples as in most other RDF inferencing systems, resulting in increased query per-
formance due to less joins. For example, the apartment in Fig. 1 is transformed into
the COOL object displayed in Fig. 3.

The Defeasible Logic Language
DR-Device supports two syntaxes for defeasible logic rules: a native CLIPS-like one
and a RuleML-compatible one. Here we focus solely on the latter, since the rule edi-

A Visual Environment for Developing Defeasible Rule Bases for the Semantic Web 177

tor of the system allows the expression of rules only in this syntax. While the RuleML
syntax utilizes as many features of the official RuleML as possible, several of the
features of the rule language cannot be expressed by the existing RuleML DTDs
and/or XML Schema documents. A new DTD (v. 0.85 compatible) and new XML
Schema documents (0.86, 0.89 compatible) were, therefore, developed using the
modularization scheme of RuleML, extending the OO-Datalog with strong negation
and negation-as-failure version of RuleML. Fig. 4 shows a self-contained simplified
version of the DTD, while the original DTD and the XML Schema documents can be
found at http://lpis.csd.auth.gr/systems/dr-device.html, along with
the system itself. Notice, that the system currently uses the v. 0.85 compatible DTD.

[carlo_ex:a1] of carlo:apartment
(carlo:size 50)
(carlo:price 300)
(carlo:pets "yes")
(carlo:name "a1")
(carlo:lift "no")

(carlo:gardenSize 0)
(carlo:floor 1)
(carlo:central "yes")
(carlo:bedrooms 1)

Fig. 3. COOL object for the apartment of Fig. 1

A defeasible logic rule is represented by an imp element and consists of three sub-
elements: the head and body of the rule (_head and _body elements respectively) as
well as a label, encoded in a _rlab element, which includes the rule’s unique ID
(ruleID attribute) and its type (ruletype attribute). The latter can only take three
distinct values (strictrule, defeasiblerule, defeater).

For example, the defeasible rule r2 of the previous section is represented as:
<imp>
 <_rlab ruleID="r2" ruletype="defeasiblerule"><ind>r2</ind></_rlab>
 <_head> <atom> <_opr><rel>acceptable</rel></_opr>
 <_slot name="name"><var>X</var></_slot> </atom>
 </_head>
 <_body> <atom> <_opr><rel href="carlo:apartment"/></_opr>
 <_slot name="name"><var>X</var></_slot> </atom>
 </_body>
</imp>

The names (rel elements) of the operator (_opr) elements of atoms are class
names, since atoms actually represent CLIPS objects. RDF class names used as base
classes in the rule condition are referred to through the href attribute of the rel
element, while derived class names (e.g. acceptable) are text values of the rel
element. Atoms have named arguments, called slots, which correspond to object
properties. Since RDF resources are represented as CLIPS objects, atoms correspond
to queries over RDF resources of a certain class with certain property values.

Superiority relations are represented as attributes of the superior rule. For example,
rule r4, which is superior to r2, is represented as follows:
<imp>
 <_rlab ruleID="r4" ruletype="defeasiblerule" superior="r2">
 <ind>r4</ind> </_rlab>
 <_head> <neg> <atom> <_opr><rel>acceptable</rel></_opr>
 <_slot name="name"><var>X</var></_slot> </atom>
 </neg> </_head>
 <_body> <atom> <_opr><rel href="carlo:apartment"/></_opr>

178 Nick Bassiliades, Efstratios Kontopoulos, and Grigoris Antoniou

<!ENTITY % URI "CDATA">
<!ELEMENT rulebase (_rbaselab, (imp | comp_rules)*)>
<!ATTLIST rulebase rdf_import CDATA #IMPLIED
 rdf_export_classes NMTOKENS #IMPLIED
 rdf_export CDATA #IMPLIED>
<!ELEMENT _rbaselab (ind)>
<!ELEMENT imp (_rlab, _head, _body)>
<!ELEMENT comp_rules (_crlab)>
<!ATTLIST comp_rules c_rules IDREFS #REQUIRED
 slotnames NMTOKENS #IMPLIED>
<!ELEMENT _rlab (ind)> <!ELEMENT _crlab (ind)>
<!ATTLIST _rlab ruleID ID #REQUIRED
 ruletype (strictrule | defeasiblerule | defeater) #REQUIRED
 superior IDREFS #IMPLIED>
<!ELEMENT _head (calc?, (atom | neg))>
<!ELEMENT _body (atom | neg | and)>
<!ELEMENT calc (fun_call+)>
<!ELEMENT fun_call (ind|var|fun_call)*>
<!ATTLIST fun_call name CDATA #REQUIRED>
<!ELEMENT naf (atom | and)> <!ELEMENT neg (atom)>
<!ELEMENT and ((atom | naf)*)> <!ELEMENT atom (_opr, _slot*)>
<!ELEMENT _opr (rel)> <!ELEMENT rel (#PCDATA)>
<!ATTLIST rel href %URI; #IMPLIED>
<!ELEMENT _slot (ind | var | _not | _or | _and)>
<!ATTLIST _slot name CDATA #REQUIRED>
<!ELEMENT _not (ind | var)>
<!ELEMENT _or ((_not|ind|var|fun_call),(_not|ind|var|fun_call)+)>
<!ELEMENT _and ((_not|ind|var|fun_call),(_not|ind|var|fun_call)+)>
<!ELEMENT ind (#PCDATA)> <!ELEMENT var (#PCDATA)>
<!ATTLIST ind type CDATA #IMPLIED href %URI; #IMPLIED>

Fig. 4. DTD for the RuleML syntax of the defeasible logic rule language

 <_slot name="carlo:name"><var>X</var></_slot>
 <_slot name="carlo:pets"><ind>no</ind></_slot>
 </atom> </_body>
</imp>

Negation is represented via a neg element that encloses an atom element. Apart
from rule declarations, there are comp_rules elements that declare groups of com-
peting rules which derive competing positive conclusions (conflicting literals). For
example, in the apartment rent example, rules r5 and r6 are competing over the con-
clusion offer(X,Y), since at most one offer can be made:
<comp_rules c_rules="r5 r6">
 <_crlab> <ind>cr1</ind> </_crlab>
</comp_rules>

Further extensions to the RuleML syntax, include function calls that are used either
as constraints in the rule body or as new value calculators in the rule head. Addition-
ally, multiple constraints in the rule body can be expressed through the logical opera-
tors: _not, _and, _or, whose semantics are similar to the CLIPS connective con-
straints [11]. Finally, the header of the rule base, namely the rulebase root element
of the RuleML document, includes a number of important parameters, which are im-
plemented as attributes: rdf_import declares the input RDF file(s), rdf_export
represents the RDF file that contains the exported results and rdf_export_classes
represents the derived classes, whose instances will be exported in RDF/XML format.
An example of all of the above is shown below:

A Visual Environment for Developing Defeasible Rule Bases for the Semantic Web 179

<rulebase rdf_import="http://lpis.csd.auth.gr/.../carlo.rdf#"
 rdf_export="http://lpis.csd.auth.gr/.../export-carlo.rdf"
 rdf_export_classes="acceptable rent">

4.2 Rule Editor – Design and Functionality

Writing rules in RuleML can often be a highly cumbersome task. Thus, the need for
authoring tools that assist end-users in writing and expressing rules is apparently
imperative. VDR-Device is equipped with DRREd, a Java-built visual rule editor that
aims at enhancing user-friendliness and efficiency during the development of VDR-
Device RuleML documents. Its implementation is oriented towards simplicity of use
and familiarity of interface. Other key features of the software include: (a) functional
flexibility - program utilities can be triggered via a variety of overhead menu actions,
keyboard shortcuts or popup menus, (b) improved development speed - rule bases can
be developed in just a few steps and (c) powerful safety mechanisms – the correct
syntax is ensured and the user is protected from syntactic or RDF Schema related
semantic errors.

More specifically, and as can be observed in Fig. 5, the main window of the pro-
gram is composed of two major parts: a) the upper part includes the menu bar, which
contains the program menus, and the toolbar that includes icons, representing the
most common utilities of the rule editor, and b) the central and more “bulky” part is
the primary frame of the main window and is in turn divided in two panels:

The left panel displays the rule base in XML-tree format, which is the most intui-
tive means of displaying RuleML-like syntax, because of its hierarchical nature. The
user has the option of navigating through the entire tree and can add to or remove
elements from the tree. However, since each rule base is backed by a DTD document,
potential addition or removal of tree elements has to obey to the DTD limitations.
Therefore, the rule editor allows a limited number of operations performed on each
element, according to the element's meaning within the rule tree.

The right panel shows a table, which contains the attributes that correspond to the
selected tree node in the left-hand area. The user can also perform editing functions
on the attributes, by altering the value for each attribute in the panel that appears be-
low the attributes table on the right-hand side. The values that the user can insert are
obviously limited by the chosen attribute each time.

The development of a rule base using VDR-Device is a delicate process that de-
pends heavily on the parameters around the node that is being edited each time. First
of all, there is an underlying procedure behind tree expansion, which is “launched”
each time the user is trying to add a new element to the rule base. Namely, when a
new element is added to the tree, all the mandatory sub-elements that accompany it
are also added. In the cases where there are multiple alternative sub-elements, none of
them is added to the rule base and the final choice is left to the user to determine
which one of them has to be added. The user has to right-click on the parent element
and choose the desired sub-element from the pop-up menu that appears (Fig. 5).

Another important component is the namespace dialog window (Fig. 5), where the
user can determine which RDF/XML namespaces will be used by the rule base. Actu-
ally, we treat namespaces as addresses of input RDF Schema ontologies that contain
the vocabulary for the input RDF documents, over which the rules will be run. The
namespaces entered by the user, as well as those contained in the input RDF docu-

180 Nick Bassiliades, Efstratios Kontopoulos, and Grigoris Antoniou

ments (indicated by the rdf_import attribute of the rulebase root element), are
analyzed in order to extract all the allowed class and property names for the rule base
being developed (see next section). These names are then used throughout the author-
ing phase of the RuleML rule base, constraining the corresponding allowed names
that can be applied and narrowing the possibility for errors on behalf of the user.

Fig. 5. The graphical rule editor and the namespace dialog window

Moving on to more node-specific features of the rule editor, one of the rule base
elements that are treated in a specific manner is the atom element, which can be ei-
ther negated or not. The response of the editor to an atom negation is performed
through the wrapping/unwrapping of the atom element within a neg element and it is
performed via a toggle button, located on the overhead toolbar.

Some components that also need “special treatment” are the rule IDs, each of
which uniquely represents a rule within the rule base. Thus, the rule editor has to
collect all of the RuleIDs inserted, in order to prohibit the user from entering the same
RuleID twice and also equipping other IDREF attributes (e.g. superior attribute)
with the list of RuleIDs, constraining the variety of possible values.

The names of the functions that appear inside a fun_call element are also par-
tially constrained by the rule editor, since the user can either insert a custom-named
function or a CLIPS built-in function. Through radio-buttons the user determines
whether he/she is using a custom or a CLIPS function. In the latter case, a list of all
built-in functions is displayed, once again constraining possible entries.

Finally, users can examine all the exported results via an Internet Explorer win-
dow, launched by VDR-Device. Also, to improve reliability, the user can also observe
the execution trace of compilation and running, both during run-time and also after
the whole process has been terminated (Fig. 6).

A Visual Environment for Developing Defeasible Rule Bases for the Semantic Web 181

Fig. 6. The Trace and Results windows

Parsing RDF Schema Ontologies
As mentioned above, the RDF Schema documents contained in the namespace dialog
window undergo certain processing and, more specifically, they are being parsed,
using the ARP parser of Jena [19], a flexible Java API for processing RDF docu-
ments. The names of the classes found are collected in the base class vector (CVb),
which already contains rdfs:Resource, the superclass of all RDF user classes.
Therefore, the CVb vector is constructed as follows:

rdfs:Resource ∈ CVb ∧ (∀C (C rdf:type rdfs:Class) → C ∈ CVb)

where (X Y Z) represents an RDF triple found in the RDF Schema documents.
Except from the base class vector, there also exists the derived class vector (CVd),

which contains the names of the derived classes, i.e. the classes which lie at rule
heads (conclusions). CVd is initially empty and is dynamically extended every time a
new class name appears inside the rel element of the atom in a rule head. This vec-
tor is mainly used for loosely suggesting possible values for the rel elements in the
rule head, but not constraining them, since rule heads can either introduce new de-
rived classes or refer to already existing ones.

The union of the above two vectors results in CVf, which is the full class vector
(CVf = CVb ∪ CVd) and it is used for constraining the allowed class names, when
editing the contents of the rel element inside atom elements of the rule body.

182 Nick Bassiliades, Efstratios Kontopoulos, and Grigoris Antoniou

Furthermore, the RDF Schema documents are also being parsed for property names
and their domains. Similarly to the procedure described above, the properties detected
are placed in a base property vector (PVb), which already contains some built-in RDF
properties (BIP) whose domain is rdfs:Resource:

BIP = {rdf:type, rdfs:label, rdfs:comment, rdfs:seeAlso,
 rdfs:isDefinedBy, rdf:value} ⊆ PVb
∀P, (P rdf:type rdf:Property) → P ∈ PVb

Apparently, there also exists the derived property vector (PVd), which contains the
names of the properties of the derived classes. This vector is initially empty and is
extended each time a new property name appears inside the _slot element of the
atom in a rule head. Therefore, the full property vector (PVf) is a union of the above
two vectors: PVf = PVb ∪ PVd.

Each of the properties in the PVf vector has to be equipped with the corresponding
superproperties and domains. Through the detected superproperties, the system can
retrieve the indirect domains for each property and, thus, enrich its set of domains.
The domain set of each property is needed, so that, for each atom element appearing
inside the rule body, when a specific class C is selected, the names of the properties
that can appear inside the _slot subelements are constrained only to those that have
C as their domain, either directly or inherited.

So, the superproperty set SUPP(P) of each property P initially contains only the
direct superproperties of P. The rest of the properties (including the derived class
properties) have an empty SUPP(P):

∀P∈PVb ∀SP∈PVb, (P rdfs:subPropertyOf SP) → SP ∈ SUPP(P)

In the next step, the SUPP(P) set is further populated with the indirect superproper-
ties of each property, by recursively traversing upwards the property hierarchy:

∀P∈PVb ∀SP∈SUPP(P) ∀SP'∈SUPP(SP) → SP' ∈ SUPP(P)

On the other hand, the DOM(P) set of domains for each property P initially con-
tains only the direct domain of P: ∀P∈PVb ∀C, (P rdfs:domain C) → C ∈ DOM(P)

The RDF built-in properties (BIP) have rdfs:Resource as their domain:

∀P∈BIP, rdfs:Resource ∈ DOM(P)

If a property does not have a domain, then rdfs:Resource is assumed:

∀ P∈(PVb-BIP), (¬∃C P rdfs:domain C) → rdfs:Resource ∈ DOM(P)

In the next step, the DOM(P) set is further populated, by inheriting the domains of
all the superproperties (both direct and indirect), according to the RDFS semantics:

∀P∈PVb ∀SP∈SUPP(P) ∀C∈DOM(SP) → C ∈ DOM(P)

Since the properties are now fully described (each one of them containing the cor-
responding superproperty and domain sets), each class C in the CVf vector has to be
linked with the allowed properties. More specifically, for each class C, five distinct
sets have to be defined: superclass set SUPC(C), subclass set SUBC(C), owned prop-
erty set OWNP(C), inherited property set INHP(C), and subsumed property set
SUBP(C).

A Visual Environment for Developing Defeasible Rule Bases for the Semantic Web 183

The SUPC(C) set initially contains all the direct superclasses of C:

∀C∈CVf ∀SC∈CVf, (C rdfs:subClassOf SC) → SC ∈ SUPC(C)

If a class does not have a superclass, then it is considered to be a subclass of
rdfs:Resource. This also applies for the derived classes:

∀C∈CVf, C≠rdfs:Resource ∧ (¬∃SC SC∈CVf → (C rdfs:subClassOf SC))
 → rdfs:Resource ∈ SUPC(C)

In the next phase, the SUPC(C) set is further populated with the indirect super-
classes of each class, by recursively traversing upwards the class hierarchy:

∀C∈CVf ∀SC∈SUPC(C) ∀SC'∈SUPC(SC) → SC' ∈ SUPC(C)

The SUBC(C) set can now be easily constructed, by inversing all the subclass rela-
tionships (both direct and indirect): ∀C∈CVf ∀SC∈SUPC(C) → C ∈ SUBC(SC)

The OWNP(C) set of owned properties is constructed, by examining the domain set
of each property object in the full property vector:

∀P∈PVf ∀C∈DOM(P) → P ∈ OWNP(C)

The inherited property set INHP(C) is constructed, by inheriting the owned proper-
ties from all the superclasses (both direct and indirect), according again to the RDFS
semantics: ∀C∈CVb ∀SC∈SUPC(C) ∀ P∈OWNP(SC) → P ∈ INHP(C)

Finally, the subsumed property set SUBP(C) is constructed, by copying the owned
properties from all the subclasses (both direct and indirect):

∀C∈CVb ∀SC∈SUBC(C) ∀P∈OWNP(SC) → P ∈ SUBP(C)

Although the domain of a subsumed property of a class C is not compatible with
class C, it can still be used in the rule condition for querying objects of class C, imply-
ing that the matched objects will belong to some subclass C' of class C, which is
compatible with the domain of the subsumed property. For example, consider two
classes A and B, the latter being a subclass of the former, and a property P, whose
domain is B. It is allowed to query class A, demanding that property P satisfies a cer-
tain condition; however, only objects of class B can possibly satisfy the condition,
since direct instances of class A do not even have property P.

The above mentioned three property sets comprise the full property set FPS(C):

FPS(C) = OWNP(C) ∪ INHP(C) ∪ SUBP(C)

which is used to restrict the names of properties that can appear inside a _slot ele-
ment (see Fig. 5), when the class of the atom element is C.

An example of all of the above is shown in Table 1. Assume an RDF Schema on-
tology with three classes connected through a hierarchy: the class apartment is a
subclass of the house class and a superclass of the suburban-apartment class.
Some typical properties of these classes are displayed in the “owned properties” row.

After the RDF Schema document is parsed, these classes are detected and included
in the base class vector (CVb). Furthermore, the corresponding properties are deter-
mined and added to the base property vector (PVb). Eventually, every available class
will be linked to the respective properties, but also to the properties of its super- and
subclasses, following the rationale developed before in this section. The final status of
the class properties is displayed in Table 1.

184 Nick Bassiliades, Efstratios Kontopoulos, and Grigoris Antoniou

This logic is reflected in the rule editor, as Fig. 5 shows. If, for example, the user
wishes to formulate the rule r4 (section 4.1), then he/she selects the carlo:apart-
ment class as the value of the href attribute of the _opr element of an atom in the
rule body and the allowed properties to be entered at the _slot element are all the
properties included in Table 1. This facilitates the user, since he/she does not have to
worry about which properties can be applied to apartment instances.

Table 1. Example of inherited, owned and subsumed properties

Classes house apartment suburban-apartment

size floor gardenSize
Owned Properties

price lift pets
 size size, price

Inherited Properties price floor, lift
floor, lift gardenSize

Subsumed Properties gardenSize, pets pets

5 Related Work

There exist several previous implementations of defeasible logics, although to the best
of our knowledge none of them is supported by a user-friendly integrated develop-
ment environment or a visual rule editor. Deimos [18] is a flexible, query processing
system based on Haskell. It implements several variants, but neither conflicting liter-
als nor negation as failure in the object language. Also, the current implementation
does not integrate with Semantic Web, since it is solely a defeasible logic engine (for
example, there is no way to treat RDF data and RDFS/OWL ontologies; nor does it
use an XML-based or RDF-based syntax for syntactic interoperability). Therefore, it
is only an isolated solution, although external translation modules could provide such
interoperability. Finally, it is propositional and does not support variables.

Delores [18] is another implementation, which computes all conclusions from a de-
feasible theory. It is very efficient, exhibiting linear computational complexity.
Delores only supports ambiguity blocking propositional defeasible logic; so, it does
not support ambiguity propagation, nor conflicting literals, variables and negation as
failure in the object language. Also, it does not integrate with other Semantic Web
languages and systems, and is thus an isolated solution.

SweetJess [16] is another implementation of a defeasible reasoning system (situ-
ated courteous logic programs) based on Jess. It integrates well with RuleML. How-
ever, SweetJess rules can only express reasoning over ontologies expressed in
DAMLRuleML (a DAML-OIL like syntax of RuleML) and not on arbitrary RDF
data, like DR-DEVICE. Furthermore, SweetJess is restricted to simple terms (vari-
ables and atoms). This applies to DR-DEVICE to a large extent. However, the basic
R-DEVICE language [8] can support a limited form of functions in the following
sense: (a) path expressions are allowed in the rule condition, which can be seen as
complex functions, where allowed function names are object referencing slots;
(b) aggregate and sorting functions are allowed in the conclusion of aggregate rules.
Finally, DR-DEVICE can also support conclusions in non-stratified rule programs
due to the presence of truth-maintenance rules [7].

A Visual Environment for Developing Defeasible Rule Bases for the Semantic Web 185

Mandarax [12] is a Java rule platform, which provides a rule mark-up language
(compatible with RuleML) for expressing rules and facts that may refer to Java ob-
jects. It is based on derivation rules with negation-as-failure, top-down rule evalua-
tion, and generating answers by logical term unification. RDF documents can be
loaded into Mandarax as triplets. Furthermore, Mandarax is supported by the Oryx
graphical rule management tool. Oryx includes a repository for managing the vocabu-
lary, a formal-natural-language-based rule editor and a graphical user interface li-
brary. Contrasted, the rule authoring tool of DR-DEVICE lies closer to the XML
nature of its rule syntax and follows a more traditional object-oriented view of the
RDF data model [8]. Furthermore, DR-DEVICE supports both negation-as-failure and
strong negation, and supports both deductive and defeasible logic rules.

6 Conclusions and Future Work
In this paper we argued that defeasible reasoning is useful for many applications in
the Semantic Web, mainly due to conflicting rules and rule priorities. However, the
development of defeasible rule bases on top of Semantic Web ontologies may appear
too complex for many users. To this end, we have implemented VDR-Device, a visual
environment for developing defeasible logic rule base by constraining the allowed
vocabulary after analyzing the input RDF ontologies. Furthermore, the system em-
ploys a user-friendly graphical shell and a defeasible reasoning system that supports
direct import from the Web and processing of RDF data and RDF Schema ontologies.

In the future, we plan to delve into the proof layer of the Semantic Web architec-
ture by enhancing further the graphical environment with rule execution tracing, ex-
planation, proof exchange in an XML or RDF format, proof visualization and valida-
tion, etc. We will try to visualize the semantics of defeasible logic in an intuitive
manner, by providing graphical representations of rule attacks, superiorities, conflict-
ing literals, etc. These facilities would be useful for increasing the trust of users for
the Semantic Web agents and for automating proof exchange and trust among agents
in the Semantic Web. Furthermore, we will include a graphical RDF ontology and
data editor that will comply with the user-interface of the RuleML editor. Finally,
concerning the implementation of the graphical editor we will adhere to newer XML
Schema-based versions of RuleML.

References
1. Antoniou G. and Arief M., “Executable Declarative Business rules and their use in Elec-

tronic Commerce”, Proc. ACM Symposium on Applied Computing, 2002.
2. Antoniou G., Billington D. and Maher M.J., “On the analysis of regulations using defeasi-

ble rules”, Proc. 32nd Hawaii International Conference on Systems Science, 1999.
3. Antoniou G., Billington D., Governatori G. and Maher M.J., “Representation results for de-

feasible logic”, ACM Trans. on Computational Logic, 2(2), 2001, pp. 255-287.
4. Antoniou G., Harmelen F. van, A Semantic Web Primer, MIT Press, 2004.
5. Antoniou G., Skylogiannis T., Bikakis A., Bassiliades N., “DR-BROKERING – A Defea-

sible Logic-Based System for Semantic Brokering”, IEEE Int. Conf. on E-Technology, E-
Commerce and E-Service, pp. 414-417, Hong Kong, 2005.

186 Nick Bassiliades, Efstratios Kontopoulos, and Grigoris Antoniou

6. Ashri R., Payne T., Marvin D., Surridge M. and Taylor S., “Towards a Semantic Web Se-
curity Infrastructure”, Proc. of Semantic Web Services, 2004 Spring Symposium Series,
Stanford University, California, 2004.

7. Bassiliades N., Antoniou, G., Vlahavas I., “A Defeasible Logic Reasoner for the Semantic
Web”, RuleML 2004, Springer-Verlag, LNCS 3323, pp. 49-64, Hiroshima, Japan, 2004.

8. Bassiliades N., Vlahavas I., “R-DEVICE: A Deductive RDF Rule Language”, RuleML
2004, Springer-Verlag, LNCS 3323, pp. 65-80, Hiroshima, Japan, 2004.

9. Berners-Lee T., Hendler J., and Lassila O., “The Semantic Web”, Scientific American,
284(5), 2001, pp. 34-43.

10. Boley H., Tabet S., The Rule Markup Initiative, www.ruleml.org/
11. CLIPS Basic Programming Guide (v. 6.21), www.ghg.net/clips/CLIPS.html.
12. Dietrich J., Kozlenkov A., Schroeder M., Wagner G., "Rule-based agents for the semantic

web", Electronic Commerce Research and Applications, 2(4), pp. 323–338, 2003.
13. Governatori G., Dumas M., Hofstede A. ter and Oaks P., “A formal approach to protocols

and strategies for (legal) negotiation”, Proc. ICAIL 2001, pp. 168-177, 2001.
14. Governatori, G., "Representing business contracts in RuleML", International Journal of

Cooperative Information Systems, 14 (2-3), pp. 181-216, 2005.
15. Grosof B. N., “Prioritized conflict handing for logic programs”, Proc. of the 1997 Int. Sym-

posium on Logic Programming, pp. 197-211, 1997.
16. Grosof B.N., Gandhe M.D., Finin T.W., “SweetJess: Translating DAMLRuleML to JESS”,

Proc. Int. Workshop on Rule Markup Languages for Business Rules on the Semantic Web
(RuleML 2002).

17. Li N., Grosof B. N. and Feigenbaum J., “Delegation Logic: A Logic-based Approach to
Distributed Authorization”, ACM Trans. on Information Systems Security, 6(1), 2003.

18. Maher M.J., Rock A., Antoniou G., Billington D., Miller T., “Efficient Defeasible Reason-
ing Systems”, Int. Journal of Tools with Artificial Intelligence, 10(4), 2001, pp. 483-501.

19. McBride B., “Jena: Implementing the RDF Model and Syntax Specification”, Proc. 2nd
Int. Workshop on the Semantic Web, 2001.

20. Nute D., “Defeasible Reasoning”, Proc. 20th Int. Conference on Systems Science, IEEE
Press, 1987, pp. 470-477.

21. Skylogiannis T., Antoniou G., Bassiliades N., Governatori G., “DR-NEGOTIATE – A Sys-
tem for Automated Agent Negotiation with Defeasible Logic-Based Strategies”, IEEE Int.
Conf. on E-Technology, E-Commerce and E-Service, pp. 44-49, Hong Kong, 2005.

Flavours of XChange, a Rule-Based Reactive
Language for the (Semantic) Web

James Bailey1, François Bry2, Michael Eckert2, and Paula-Lavinia Pătrânjan2

1 NICTA Victoria Laboratory, Dept. of Computer Science and Software Engineering,
University of Melbourne, 3010, Australia
http://www.cs.mu.oz.au/~jbailey/

2 University of Munich, Germany
http://pms.ifi.lmu.de/

Abstract. This article introduces XChange, a rule-based reactive lan-
guage for the (Semantic) Web. Stressing application scenarios, it first
argues that high-level reactive languages are needed for both Web and Se-
mantic Web applications. Then, it discusses technologies and paradigms
relevant to high-level reactive languages for the (Semantic) Web.

1 Introduction

A common perception of the Web is that of a distributed repository of hyper-
media documents, with clients (in general browsers) that download documents,
and servers that store and update documents. This perception is not fully accu-
rate: Many Web applications rely on the updating of server data in response to
requests of clients, or client data in response to requests of servers. This article
first argues that complementing HTTP, the Web’s communication infrastruc-
ture, with high-level languages for updates and reactivity is needed for both
standard Web and Semantic Web applications. It then introduces XChange,
a novel high-level language for updates and reactivity on the (Semantic) Web
based on Event-Condition-Action rules.

Many Web applications build upon servers that update data according to
client requests or actions. This is the case of e-Commerce systems that receive,
process and buy orders, of e-Learning systems that select and deliver teaching
materials depending on students’ test performances, and of communication plat-
forms such as wikis, where several users modify the same documents. Conversely,
some Web applications also build upon clients that update data according to
server requests. This is the case with so-called cookies, i.e. descriptions on a
client of the states of a connection to a server, or when a client keeps, after a
connection to a server, data collected during the connection, e.g. a railway or
airline electronic ticket.

Many Web applications also build upon complex reactions to messages or
events, exchanged not only between clients and servers but also (via servers)
between clients. This is the case of Web-based communication platforms (con-
tributors are informed of other contributors joining in or leaving a session), of

A. Adi et al. (Eds.): RuleML 2005, LNCS 3791, pp. 187–192, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

188 James Bailey et al.

Web-based business management systems (business travel applications, planning
and reimbursement in large companies rely upon complex work-flows of actions
and messages), of Web-based systems offering context-dependent services (e.g.
a time and location dependent car park directory adapting the information it
delivers and reacting to changes such as clients changing places and car parks
announcing their free parking capacities), etc.

Updates and reactivity are as much “Semantic Web issues”, as they are
“standard Web issues”. The applications mentioned above might involve both
standard Web and Semantic Web data such as HTML, XML, RDF, Topic Maps,
and OWL data, as well as inference from RDF triples.

Updates and reactivity on the Web are realised using HTTP/1.1; its com-
munication paradigm is a client-server model of request-response interactions.
Message headers give rise to the specification of network communication and
system parameters. Although HTTP provides a communication infrastructure
to implement updates and reactivity on the Web, more abstract and higher-level
languages are needed that i) abstract away network communication and system
issues, ii) ease the specification of complex updates of Web resources (e.g. XML,
RDF, and OWL data), iii) are convenient for specifying complex flows of actions
and reactions on the Web.

2 Technologies and Paradigms

Atomic Events, Event Messages, and Composite Events. Web applications re-
quire a number of different kinds of atomic events: i) events exchanged between
Web nodes for a node to trigger reactions at remote nodes, ii) events local to a
node, to help express local reactivity, e.g. local updates, and iii) system events for
reacting to the functioning, or non-functioning, of the encompassing “system(s)”.
A natural assumption is that events exchanged between nodes are expressed in
XML as event messages. Reacting to complex events is essential. Complex events
have received considerable attention in active databases [11, 12]. However, differ-
ences between (generally centralised) active databases and the Web, where cen-
tral clock and management are missing, message deliveries between Web nodes
can be delayed, and user-centered (instead of system-centered) paradigms are
expected, necessitate new approaches.
Temporal Dependencies often have to be expressed when composite events are
specified, e.g. “depend on an event E1 occurring before an event E2”, or “depend
on an event E occurring within a time interval I”. Sophisticated temporal notions
and temporal event composition constructs are needed.
Event Messages vs. Web Resources. Event messages (volatile data)and standard
Web resources (persistent data) should be kept in two separate data kinds, since
otherwise the development of the “reactive” Web may be insufficiently distin-
guishable from the (Semantic) Web.
Event-Condition-Action Rules (ECA rules) fit well with the widespread and
intuitive view of the Web as a distributed repository of documents. Indeed, ECA
rules build on queries by the use of “conditions”. Thus, ECA rules building on a

Flavours of XChange 189

Web or Semantic Web query language are a natural paradigm for reactivity on
the Web.
Distributed Processing and Communication. On the Web, reactive programs call
for distributed processing. Reactive languages making each node capable of con-
trolling its own reactive behaviour fit the decentralised management of the (Se-
mantic) Web.

3 XChange in a Nutshell

XChange is a language of ECA rules. Each rule consists of three parts: i) an
“event”-part, more precisely an event query, accessing event messages and (local)
system events, ii) a Web query referred to as the “condition” accessing standard
Web data, and iii) an “action” expressing iii.a) single updates, iii.b) messages to
be sent to Web nodes, or iii.c) transactions i.e. a group of actions to be realised
in an all-or-nothing manner. Figure 1 presents an XChange rule sending SMS
notifications of delayed flights.

RAISE xchange:event [

xchange:recipient ["http://sms-gateway.org/us/206-240-1087/"],

text-message ["Your flight", var N, "has been cancelled."]

]

ON xchange:event {{

flight-cancellation {{

flight-number{var N}, passenger{{ name {"John Public"} }}

}}

}}

FROM in { resource { "http://www.example.com/lufthansa.xml", "xml" },

flights {{ flight {{ number { var N } }} }}

}

END

Fig. 1. An XChange ECA rule

The atomic events of XChange are happenings (e.g. an update of a possibly
remote Web resource) to which each Web node (through a reactive program)
may or may not react. XChange has explicit events and implicit events. Explicit
events are raised by a user or by an XChange program at a Web node and sent to
this and/or other Web nodes as event messages. XChange’s event messages are
(arbitrary) XML documents within an event message envelope expressed itself
as a (specific) XML document.

Figure 2 presents an XChange event message in the term syntax of Xcerpt
[2, 4] and XChange; the (arbitrary) content is surrounded by a fixed envelope.
Nesting messages with their former envelopes makes it possible to track the
origin of messages, removing envelopes before forwarding messages hides their
origin.

190 James Bailey et al.

xchange:event [

xchange:sender { "http://www.pms.lmu.de/" },

xchange:recipient { "http://ruleml.org" },

xchange:recipient { "http://www.cs.mu.oz.au/~jbailey/" },

xchange:raising-time { "2005-06-29T18:15:00" },

info { "Here is an article for RuleML’06!" },

article [title {"Flavours of XChange"}, authors [...], body [...]]

]

Fig. 2. An XChange Event Message

Implicit events are local events such as updates of Web resources and system
events. Events are transmitted from one Web node to another via event mes-
sages. Thus, an event sent from one Web node to another is necessarily explicit.
Composite events are defined in XChange as answers to composite event queries,
cf. [3, 7]

XChange makes a strict distinction between persistent data, i.e. Web re-
sources, and volatile data, i.e. by definition events. XChange relies on the query
language Xcerpt [2, 13] for accessing persistent data i.e. Web resources. XChange
uses a novel query language especially tuned to events for accessing volatile data,
i.e. events. This event query language [7] builds upon Xcerpt and extends it with
constructs for temporal event composition. Event messages can be turned into
Web resources, and Web resources might be included in event messages.

XChange’s communication model is peer-to-peer, i.e. all Web nodes have the
same communication capabilities and every party can initiate a communication
with every other Web node. Two basic communication strategies are possible on
a network: a push strategy where senders inform recipients of messages they want
to send to them, and a pull strategy where (potential) recipients keep querying
all (potential) senders for messages. Arguably, the pull strategy is convenient
for querying (persistent) Web resources, while the push strategy is convenient
for querying (volatile) events. XChange relies on the push strategy for event
queries and on the pull strategy for Web resource queries. XChange’s message
communication is asynchronous, i.e. XChange’s ‘send operation’ is non-blocking:
the execution of an XChange program immediately continues after a ‘send op-
eration’ without waiting for the message transmission, an acknowledgment of
receipt, or a reply. Note that blocking sending can easily be implemented using
XChange rules.

XChange programs are processed in a distributed manner. Each (XChange-
aware) Web node processes, possibly by delegation to another Web node, the
XChange programs locally specified. XChange relies neither on “super-peers”,
nor on central services, such as a central synchronisation point.

XChange ensures a local control of events, as well as of event memorisation.
A Web node might reject an update request from a remote Web node (sent in
an event message), e.g. because of a lack of credentials. Furthermore, the events
memorised at a Web node only depend on the XChange event queries posed at
that node. The time during which an atomic event, e.g. an event message or a
local implicit event, is kept in memory at a Web node only depends on the event

Flavours of XChange 191

queries posed at that node. By design, XChange composite event queries can be
evaluated without keeping any event forever in memory.

XChange event queries have a declarative semantics. XChange event query
evaluation is data-driven, incoming events are used for incrementally evaluating
queries. In contrast, the evaluation of queries against Web resources, e.g. Xcerpt
queries and XChange conditions, is in general query-driven.

4 Related Work and Conclusion

Allen’s Temporal Relations [1] and the composite events of Active Databases
[5, 6, 8] have been important inspirations in defining XChange’s temporal event
composition operators. As opposed to XChange, high-level reactive languages for
the Web formerly developed, e.g. [10], support only simple update operations on
XML (and RDF) documents. They offer no means to specify several updates to
be executed in a given order or in an all-or-nothing manner. Another related
system is Xyleme [9], a system for monitoring and subscription on the Web with
‘alerters’ monitoring simple updates of Web resources and a ‘monitoring query
processor’ for complex event detection. Its reactive functionality is highly tuned
to its specific application field.

XChange significantly differs from and/or extends over the above-mentioned
approaches with i) its structured event messages, ii) its distinction between Web
resources and event messages, iii) its logical variables possibly shared by its
event queries, conditions, and actions, iv) its declarative semantics, and v) its
communication and distributed processing models.

Acknowledgments

This research has been funded by the European Commission and by the Swiss
Federal Office for Education and Science within the 6th Framework Programme
project REWERSE number 506779 (http://rewerse.net)

References

1. J. F. Allen. Maintaining Knowledge About Temporal Intervals. Comm. ACM,
26:832–843, 1983.

2. J. Bailey, F. Bry, T. Furche, and S. Schaffert. Web and Semantic Web Query
Languages: A Survey. In Reasoning Web, LNCS 3564. Springer-Verlag, 2005.

3. F. Bry and P.-L. Pătrânjan. Reactivity on the Web: Paradigms and Applications
of the Language XChange. In Proc. 20th ACM Symp. Applied Computing, 2005.

4. F. Bry and S. Schaffert. A Gentle Introduction into Xcerpt, a Rule-based Query
and Transformation Language for XML. In Proc. Int. Workshop on Rule Markup
Languages for Business Rules on the Semantic Web, 2002.

5. A. Buchmann, A. Deutsch, and J. Zimmermann. The REACH Active OODBMS.
In Proc. ACM SIGMOD Int. Conf. on the Management of Data, 1995.

192 James Bailey et al.

6. S. Chakravarthy and D. Mishra. SNOOP: An Expressive Event Specification Lan-
guage for Active Databases. Data and Knowledge Engineering, 14(1), 1994.

7. M. Eckert. Reactivity on the Web: Event Queries and Composite Event Detection
in XChange. Master’s thesis, Inst. for Informatics, Univ. Munich, Germany, 2005.

8. R. Meo, G. Psaila, and S. Ceri. Composite Events in Chimera. In Proc. 5th Int.
Conf. on Extending Database Technology, 1996.

9. B. Nguyen, S. Abiteboul, G. Cobena, and M. Preda. Monitoring XML Data on
the Web. In Proc. ACM SIGMOD Conf. on the Management of Data, 2001.

10. G. Papamarkos, A. Poulovassilis, and P. Wood. Event-Condition-Action Rules Lan-
guages for the Semantic Web. In Proc. Workshop on Semantic Web and Databases,
2003.

11. N. W. Paton. Active Rules in Database Systems. Springer-Verlag, 1999.
12. J. Widom and S. Ceri. Active Database Systems. Morgan Kaufmann, 1996.
13. Xcerpt. http://xcerpt.org.

Rule-Based Framework for Automated Negotiation:
Initial Implementation

Costin Bădică1, Adriana Bădiţă1, Maria Ganzha2,
Alin Iordache1, and Marcin Paprzycki3

1 University of Craiova, Software Eng. Dept. Bvd. Decebal 107, Craiova, 200440, Romania
badica costin@software.ucv.ro

2 Elblag University of Humanities and Economy, ul Lotnicza 2, 82-300 Elblag, Poland
ganzha@op.pl

3 Computer Science Institute, Warsaw School of Social Psychology, 03-815 Warsaw, Poland
Marcin.Paprzycki@swps.edu.pl

Abstract. The note reports on the current status of an implementation of a rule-
based negotiation mechanism in a model e-commerce multi-agent system. Here,
we briefly describe the conceptual architecture of the system and its initial imple-
mentation utilizing JADE and JESS. A particular negotiation scenario involving
English auctions performed in parallel is also discussed.

1 Introduction

Recently, we have started developing, implementing and experimenting with a multi-
agent e-commerce system (see [5] and work referenced there). One of the directions
of our work is to provide agents with flexibility required for price negotiations [10]
governed by mechanisms unknown in advance. In this context, rule-based approaches
have been indicated as a very promising technique for parameterizing the negotiation
design space ([1, 2, 4, 9, 11, 12]). Proposals have been put forward to use rules for
describing either negotiation strategies ([4, 11]), mechanisms ([1]) or both ([6]), while
special attention has been paid to auctions, as one of the best understood forms of
negotiations ([12]). Note that when designing systems for automated negotiations one
should distinguish between negotiation protocols (or mechanisms) that define ”rules of
encounter” between participants and negotiation strategies that define behaviors aiming
at achieving a desired outcome.

In this paper we discuss design and implementation of a rule-based framework for
enforcing specific negotiation mechanisms inspired by work presented in [1]. We pro-
ceed as follows. In the next section we describe briefly the negotiation framework in-
troduced in [1] and show how it fits into our e-commerce model. In section 3 we outline
our design and give some details of the sample implementation using JADE ([7]) and
JESS ([8]). In particular we highlight how rules are activated by the negotiation host in
response to messages received from the negotiation participants. Furthermore we show
how, in our implementation, the rule-based sub-agents of the negotiation host (as de-
scribed in [1]) share a single JESS rule engine, rather than having separate rule engines
within each sub-agent. We follow with description of two experiments: a simple exper-
iment to highlight agent interactions and a more complex experiment with many agents
and many parallel negotiations performed to asses the scalability of the implementation.

A. Adi et al. (Eds.): RuleML 2005, LNCS 3791, pp. 193–198, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

194 Costin Bădică et al.

2 Conceptual Architecture

Authors of [1] sketched a complete framework for implementing portable agent negotia-
tions. Their framework comprises: (1) negotiation infrastructure, (2) generic negotiation
protocol and (3) taxonomy of declarative rules. The negotiation infrastructure defines
roles of negotiation participants and of a host. Participants negotiate by exchanging pro-
posals within a negotiation locale managed by the host. Depending on the negotiations
type, the host can also play the participant role participant. The generic negotiation pro-
tocol defines the three phases of a negotiation: admission, exchange of proposals and
formation of an agreement, in terms of how and when messages should be exchanged
between the host and participants. Negotiation rules are used for enforcing the negotia-
tion mechanism. Rules are organized into a taxonomy: rules for participants admission
to negotiations, rules for checking the validity of negotiation proposals, rules for pro-
tocol enforcement, rules for updating the negotiation status and informing participants,
rules for agreement formation and rules for controlling the negotiation termination.

Our goal is to create a model system in which agents perform functions typically
observed in e-commerce. In this environment, e-shops and e-buyers are represented by
shop and seller, and respectively client and buyer agents. Let us consider a simplified
version of this scenario that involves a single shop agent S and n client agents Ci,
1 ≤ i ≤ n. The shop agent is selling m products P = {1, 2, . . . ,m}. We assume that
each client agent Ci, 1 ≤ i ≤ n, is seeking a set Pi ⊆ P of products (we therefore
restrict our attention to the case where all sought products are available through shop
agent S). Shop agent S is using m seller agents S j, 1 ≤ j ≤ m and each seller agent
S j is responsible for selling single product j. Each client agent Ci is using buyer agents
Bik to purchase products in set Pi. Each buyer agent Bik is responsible with negotiating
and buying exactly one product k ∈ Pi, 1 ≤ i ≤ n. To attempt purchase buyer agents
Bik migrate to the shop agent S and engage in negotiations; a buyer agent Bik, that
was spawned by client agent Ci, will engage in negotiation with seller S k, to purchase
product k. This simple scenario is sufficient for the purpose of our paper, i.e. to illustrate
how a number of rule-based automated negotiations can be performed concurrently. In
this setting, each seller agent S j plays the role of a negotiation host defined in [1].
Therefore, in our system, we have exactly m instances of the framework described in
[1]. Each instance is managing a separate negotiation “locale”, while all instances are
linked to the shop agent S . For each instance we shall have one separate set of rules
that describes the negotiation mechanism implemented by that host (seller agent). See
figure 1a for an example.

3 Design and Implementation

Let us now discuss: (i) how the negotiation host is structured into sub-agents; (ii) how
rules are executed by the host in response to messages received from participants and
how rule firing control is switched between sub-agents; (iii) how the generic negotiation
protocol was implemented using JADE agent behaviors and ACL message exchanges.

The Negotiation Host. Host and negotiation participant agents are ordinary JADE
agents. The host agent encapsulates a number of sub-agents that are implemented as
ordinary Java classes: Gatekeeper, Proposal Validator, Protocol Enforcer, Information

Rule-Based Framework for Automated Negotiation: Initial Implementation 195

Updater, Negotiation Terminator and Agreement Maker. Each sub-agent has a handle()
method that is activated whenever the sub-agent must react to check the category of
rules it is responsible for. In addition to sub-agents, the host encapsulates two objects:
the Negotiation Locale stores the negotiation template (a structure that defines negotia-
tion parameters; see [1]) and the list of negotiation participants; the Blackboard object is
a JESS rule engine (class jess.Rete) that is initialized with negotiation rules. Whenever
category of negotiation rules is checked, the rule engine is activated. The host contains
handler methods that are activated by action() methods of the agent behaviors. Each
handler method delegates the call to the responsible sub-agent. Finally, the sub-agent
activates the rule engine via a member object that points to the parent host agent.

Controlling Rule Execution. Rather then implementing each sub-agent of the negoti-
ation host as a separate rule engine [1], we use a single JESS engine shared by all sub-
agents. Rules and facts managed by the rule engine are partitioned into JESS modules.
Blackboard facts are instances of JESS deftemplate statements and they represent: the
negotiation template; the active proposal that was validated by the Proposal Validator
and the Proposal Enforcer sub-agents; seller reservation price (not visible to partici-
pants); negotiation participants; the negotiation agreement that is eventually generated
at the end of a negotiation; the information digest that is visible to the negotiation par-
ticipants; the maximum time interval for submitting a new bid before the negotiation
is declared complete; the value of the current highest bid. Each category of rules for
mechanism enforcement is stored in a separate JESS module. This module is controlled
by the corresponding sub-agent of the negotiation host. Whenever the sub-agent han-
dles a message it activates the rules for enforcing the negotiation mechanism. Taking
into account that all rules are stored internally in a single JESS rule-base (attached to a
single JESS rule engine), the JESS focus statement is used to control the firing of rules
located only in the focused module. This way, the JESS facility for partitioning the rule-
base into distinct JESS modules proves very useful for controlling separate activation
of each category of rules. Note that JADE agent behaviors are scheduled for execution
in a non-preemptive way and this implies that firings of rule categories are correctly
serialized and thus they do not cause any synchronization problems.

Generic Negotiation Protocol and Agent Behaviors. The negotiation process has
three phases: (1) admission, (2) proposal submission and (3) agreement formation.
Tasks of sending and receiving messages according to the constraints stated by the
negotiation protocol are implemented using JADE agent behaviors.

The admission phase starts when a new participant requests admission by send-
ing a PROPOSE message to the host. The host grants (or not) the admission of the
participant to the negotiation and responds with either an ACCEPT-PROPSAL or a
REJECT-PROPOSAL message. Currently, the PROPOSE message is sent by the par-
ticipant immediately after its initialization stage, just before its setup() method returns.
The task of receiving the admission proposal and issuing an appropriate response is im-
plemented as a separate host behavior. When a participant is admitted, it receives from
the host a template representing auctions parameters: auction type, auctioned product,
minimum bid increment termination time window, currently highest bid.

A participant enters the phase of submitting proposals immediately after it was ad-
mitted (participants join negotiation dynamically). This event is signaled by the recep-

196 Costin Bădică et al.

tion of an ACCEPT-PROPOSAL message together with the negotiation template con-
taining currently highest bid. As soon as they obtain the negotiation template and cur-
rently highest bid agent sends its first bid. The negotiation protocol states also that a par-
ticipant will be notified by the host if its proposal was accepted (ACCEPT-PROPOSAL)
or rejected (REJECT-PROPOSAL). When a proposal is accepted, the protocol requires
that all other participants are notified accordingly with INFORM messages. Strategies
of participant agents must be defined in accordance with the generic negotiation pro-
tocol. The strategy defines when a negotiation participant submits a proposal and what
are proposal parameters. For the time being we utilize a simplistic solution: participant
submits first bid immediately after it was admitted and subsequently, whenever it re-
ceives notification that another proposal was accepted by the host. Each time the value
of the bid is equal to that of the currently highest bid plus an increment (that is private
to the participant). Additionally, each participant has its own reservation price and if the
value of the new bid exceeds it then the proposal submission is canceled.

Finally, the agreement formation phase can be triggered at any time. When the
agreement formation rules signal that an agreement was reached, the protocol states that
all the participants involved will be notified by the host with INFORM messages. The
agreement formation check is implemented as a timer task (class java.util.TimerTask)
that is executed in the background thread of a java.util.Timer object.

Negotiation
locale2

S2
Rules2

Negotiation
locale3

S3
Rules3

S

Negotiation
locale1

S1
Rules1

B11 B21

C1

B12 B32

C2

B23 B33

C3

a.Conceptual architecture of the system b.First part of the negotiation

Fig. 1.

4 Experiments

In the first experiment we consider that shop is selling 2 products, both products have a
reservation price of 50 and require a minimum bid increment of 5. There are 2 clients
C1 and C2, each seeking both products. Client C1 has a reservation price of 52 for prod-
uct 1, a reservation price of 61 for product 2 and a bid increment of 9. Client C2 has
a reservation price of 54 for product 1, a reservation price of 63 for product 2 and a
bid increment of 11. Client C1 is using buyers B11 and B12, and similarly client C2 is

Rule-Based Framework for Automated Negotiation: Initial Implementation 197

Table 1. Explanation of message exchanged during negotiation in experiment 1

B11 52 9 B21 54 11 B12 61 9 B22 63 11
request admission request admission request admission request admission
admission granted 0 admission granted 9 admission granted 0 admission granted 0
bid 9 bid 20 bid 9 bid 11
accept bid 9 accept bid 20 accept bid 9 inform 9
inform 20 inform 29 inform 20 bid 20
bid 29 bid 40 bid 29 reject bid 11
accept bid 29 accept bid 40 accept bid 29 accept bid 20
inform 40 inform 49 inform 40 inform 29
bid 49 bid 49 accept bid 40
accept bid 49 inform 60 inform 49

bid 60
accept bid 60
win 60

using buyers B21 and B22. Some of the messages exchanged between agents in this ex-
periment are shown in figure 1b (note that only sellers and buyers are shown on that
figure (clients are not shown, as they only play the role of creating buyers and send-
ing them to negotiations). While Figure 1b show messages exchanged between agents
during negotiation, their content is not visible. Therefore we provide an explanation of
message exchanges in Table 1. The table header contains buyer names together with
their reservation prices and bid increments.

There are some interesting facts to note in table 1. First, when buyer B21 is granted
admission to the negotiation, buyer B11 had already submitted a bid and that bid was ac-
cepted. Therefore B21 will get a value of 9 in the negotiation template for the currently
highest bid; note that this is an example of a participant that dynamically joins nego-
tiation in progress. Second, the negotiation between S 1 and agents B11 and B21 ended
without a winner. The highest accepted bid was 49 from B11 but this value is lower than
the reservation price 50 of S 1. According to their strategies, none of the participants B11

and B21 is able to issue a higher bid that is still lower than their own reservation prices.
Third, negotiation between S 2 and agents B21 and B22 ended with agent B22 becoming
a winner and the highest bid 60. Finally, note that bid 11 of buyer B22 was rejected be-
cause at the time this bid was submitted there was already a highest bid of 9 accepted,
and thus, the rule saying that the minimum value of the bid increment is 5 was violated.
However, by the time B22 submitted its bid, it wasn’t aware that the other participant
B12 also posted a bid and got it accepted.

In the second experiment we considered 10 products and 12 clients seeking all
of them. The auction parameters were the same for all auctions: reservation price 50
and minimum bid increment 5. Clients reservation prices were randomly selected from
the interval [50,72] and their bid increments were randomly selected from the interval
[7,17]. In the experiment 143 agents were created: 1 shop, 10 sellers, 12 clients and 120
buyers and 10 English auctions were run in parallel. The average number of messages
exchanged per negotiation was about 100 and all the auctions finished successfully.
While the total number of agents is still small (as compared to [3]) this experiment
indicates that the proposed approach has good potential for scalability.

198 Costin Bădică et al.

5 Concluding Remarks

In this note we have discussed a multi-agent system that utilizes a rule-based approach
to implement flexible automated negotiations. This system is being implemented using
JADE and JESS and its simplified version works for the case of English auctions. As
future work we plan to: i) complete the integration of the rule-based framework into our
e-commerce model; ii) asses the generality of our implementation by extending it to in-
clude other price negotiations; iii) allow the logical specification of the rules in order
to asses their correctness; iv) investigate the effectiveness of describing and/or publish-
ing negotiation rules using rule markup languages. We will report on our progress in
subsequent papers.

Acknowledgement

We would like to thank authors of [1] for providing us with their sample implemen-
tation. This was a valuable input for producing the implementation and experimental
results described here.

References

1. Bartolini, C., Preist, C., Jennings, N.R.: A Software Framework for Automated Negotiation.
In: Proc. of SELMAS’2004, LNCS 3390, Springer Verlag (2005) 213–235.

2. Benyoucef, M., Alj, H., Levy, K., Keller, R.K.: A Rule-Driven Approach for Defining the
Behaviour of Negotiating Software Agents. In: J.Plaice et al. (eds.): Proc. of DCW’2002,
LNCS 2468, Springer verlag (2002) 165–181.

3. Chmiel, K., Tomiak, D., Gawinecki, M., Karczmarek, P., Szymczak, Paprzycki, M.: Test-
ing the Efficiency of JADE Agent Platform. In: Proc. of the 3rd International Symposium
on Parallel and Distributed Computing, Cork, Ireland. IEEE Computer Society Press, Los
Alamitos, CA, USA, (2004), 49–57.

4. Dumas, M., Governatori, G., ter Hofstede, A.H.M., Oaks, P. (2002): A Formal Approach
to Negotiating Agents Development. In: Electronic Commerce Research and Applications,
Vol.1, Issue 2 Summer, Elsevier Science, (2002) 193–207.

5. Ganzha, M., Paprzycki, M., Pı̂rvănescu, A., Bădică, C, Abraham, A.: JADE-based Multi-
Agent E-commerce Environment: Initial Implementation, In: Analele Universităţii din
Timişoara, Seria Matematică-Informatică (2005) (to appear)

6. Governatori, G., Dumas, M., ter Hofstede, A.H.M., and Oaks, P.: A formal approach to proto-
cols and strategies for (legal) negotiation. In: Henry Prakken, editor, Proc. of the 8th Interna-
tional Conference on Artificial Intelligence and Law, IAAIL, ACM Press, (2001) 168–177.

7. JADE: Java Agent Development Framework. See http://jade.cselt.it.
8. JESS: Java Expert System Shell. See http://herzberg.ca.sandia.gov/jess/.
9. Lochner, K.M., Wellman, M.P.: Rule-Based Specification of Auction Mechanisms. In: Proc.

AAMAS’04, ACM Press, New York, USA, (2004).
10. Lomuscio, A.R., Wooldridge, M., Jennings, N.R.: A classification scheme for negotiation in

electronic commerce. In: F. Dignum, C. Sierra (Eds.): Agent Mediated Electronic Commerce:
The European AgentLink Perspective, LNCS 1991, Springer Verlag (2002) 19–33.

11. Skylogiannis, T., Antoniou, G., Bassiliades, N.: A System for Automated Agent Negotiation
with Defeasible Logic-Based Strategies - Preliminary Report. In: Boley, H., Antoniou, G.
(eds): Proc. of RuleML’04, Hiroshima, Japan. LNCS 3323 Springer-Verlag (2004) 205–213.

12. Wurman, P.R., Wellman, M.P., Walsh, W.E.: A Parameterization of the Auction Design
Space. In: Games and Economic Behavior, 35, Vol. 1/2 (2001), 271–303.

Uncertainty and RuleML Rulebases:
A Preliminary Report

Giorgos Stoilos1, Giorgos Stamou1, Vassilis Tzouvaras1, and Jeff Z. Pan2

1 Department of Electrical and Computer Engineering, National Technical University
of Athens, Zographou 15780, Greece

2 School of Computer Science, The University of Manchester
Manchester, M13 9PL, UK

Abstract. Uncertainty, like imprecision and vagueness, has gained con-
siderable attention the last decade. To this extend we present a prelim-
inary report on extending the Rule Markup Language (RuleML) with
fuzzy set theory, in order to be able to represent and handle vague knowl-
edge. We also provide semantics for the case of fuzzy FOL RuleML.

1 Introduction

According to widely known proposals for a Semantic Web architecture, ontologies
will play a key role in the Semantic Web This has led to considerable efforts to
developing a suitable ontology language, culminating in the design of the OWL
Web Ontology Language [1], which is now a W3C recommendation. Although
OWL adds considerable expressive power with respect to languages such as RDF,
it does have expressive limitations, particularly with respect to what can be said
about properties, as well as the total absence of rules, which are valuable in
many real life applications. To this end the extension of the current semantic
web architecture with some form of rules language has lead to several proposals,
like SWRL [2], FOL RuleML [3], and many more.

Even though the combination of OWL and rules results in the creation of a
highly expressive language, there are still many occasions where this language
fails to accurately represent knowledge of our world. In particular these languages
fail at representing vague and imprecise knowledge and information. Uncertainty,
is both a characteristic of information itself, like the concepts of a “tall” preson,
a “happy” person, a “fast” car, a “hot” place, a “faulty” part, and many more.
Experience with these domains has shown that in many cases dealing with such
type of information yields more realistic applications, which derive better results.
The need for covering uncertainty in the Semantic Web context has been stressed
out in literature many times the last years; some examples are [4–6].

In order to capture imprecision in rules, we propose a fuzzy extension of
the RuleML framework, called f-RuleML. In f-RuleML, facts about the world
can include a specification of the “degree” (a truth value between 0 and 1) of
confidence with which one can assert that a tuple of individuals is an instance
of a given relation.

A. Adi et al. (Eds.): RuleML 2005, LNCS 3791, pp. 199–203, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

200 Giorgos Stoilos et al.

2 Preliminaries

Fuzzy set theory and fuzzy logic constitute a widely used framework for the rep-
resentation and management of various forms of uncertainty, like vagueness and
imprecision, introduced in real-life applications. They are based on the notion of
fuzzy sets, introduced in [7]. While in terms of classical set theory any element be-
longs or not to a set, in fuzzy set theory this is a matter of degree. More formally,
let X be a collection of elements with cardinality m, i.e X = {x1, x2, . . . , xm}. A
crisp subset S of X is any collection of elements of X that can be defined with
the aid of its characteristic function χA(x) that assigns any x ∈ X to a value
1 or 0 if this element belongs to X or not, respectively. On the other hand, a
fuzzy subset A of X, is defined by a membership function μA(x), or simply A(x),
x ∈ X . This membership function assigns any x ∈ X to a value between 0 and
1 that represents the degree in which this element belongs to X.

The classical set theoretic operation of complement, union, intersection and
the logical operation of implication are also extended to this new framework and
are performed by special mathematical functions over the unit interval called
fuzzy complement (c), fuzzy intersection or t-norm (t or ∗), fuzzy union or t-
conorm (u) and fuzzy implication (⇒), respectively [8]. Among these operations
fuzzy implications play an important role as they determine the properties of
the resulting fuzzy logic [9]. In our context we will consider only the class of
R-implications [8], cause of their interesting properties. These implications are
given by the equation: x ⇒ y = sup{z ∈ [0, 1] | t(x, z) ≤ y}, and they have the
nice property that x ⇒ y = 1 if and only if x ≤ y.

3 Dealing with Uncertainty in RuleML

In the current section we will use a motivating use case to present the syntactic
changes that need to be applied to the RuleML framework.

Consider a casting company, which has a knowledge base that consists of
models. Advertisement companies are using this knowledge base to look for mod-
els to be used in tv commercials. Each entry in the knowledge base contains a
photo of the model, personal information and some body and face characteristics.
The casting company has created a user interface for inserting the information
of the models as instances of a predefined ontology. It also provides a query
engine to search for models with specific characteristics, which in the case of ad-
vertisement companies usually are complex characteristics, like the hair quality,
color, body fitness, skin quality, etc, in order to determine if they qualify for a
certain commercial. Obviously, such a knowledge base contains a wealth of vague
concepts, like long hair, brown eyes, athletic body, and many more. In such a
case one might want to specify the membership degree of an individual, say
“SUSAN” to a fuzzy concept like brown eyes, as brown eyes(SUSAN) ≥ 0.7,
to indicate the least degree that “SUSAN” participates to the fuzzy concept
brown eyes. We can make these assertions explicit to the system by encoding
them as RuleML fuzzy facts. In that case we can write,

Uncertainty and RuleML Rulebases: A Preliminary Report 201

From the above examples we can see that the syntactic changes that need
to take place are minimal and only involve the syntax of fuzzy facts. So the
additional change that needs to take place in the XML Schema definition of the
element Atom [10] is the following:

The XML Schema definition of the new tag degree could be given by the
following schema definition:

Subsequently, one can use such fuzzy facts to encode knowledge in the form
of fuzzy rules without any further syntax modification.

4 Fuzzy FOL RuleML

In the current section we will present the syntax and semantics of Fuzzy FOL
RuleML (f-FOL RuleML). Our presentation follows the one in [11].

Definition 1. [11] A predicate language consists of a non-empty set of pred-
icates, each together witha positive natural number (the arity), and a (possibly
empty) set of object constants. Predicates are mostly denoted by P, Q, R, ...,
constants by c, d, Logical Symbols are object variables x, y, ..., connectives
&,→, truth constants r̄ for each rational r ∈ [0, 1] and quantifiers ∃, ∀. Other
connectives are defined as follows:

202 Giorgos Stoilos et al.

φ ∧ ψ = ψ&(φ → ψ), φ ≡ ψ = (φ → ψ)&(ψ → φ)
¬φ = φ → 0̄, φ ∨ ψ = ((φ → ψ) → ψ) ∧ ((ψ → φ) → φ)

Atomic formulas have the form P (t1, ..., tn), where P is a predicate of arity n
and t1, ..., tn are terms. If φ, ψ are formulas and x is an object variable then
φ → ψ, φ&ψ, (∃x)φ, (∀x)φ, r̄ are formulas.

Definition 2. [11] Let J be a predicate language and let L be a linearly ordered
BL-algebra. An L-structure M = 〈M, (rP)P , (mc)c〉 for J has a non-empty
domain M , for each n-ary predicate P a L-fuzzy n-ary relation rP : Mn → L on
M , associating to each n-tuple of elements of M the degree rP (m1, ..., mn) ∈ L of
the membership of (m1, ..., mn) to the fuzzy relation, and for each object constant
c, mc is an element of M .

Definition 3. [11] Let J be a predicate language and M an L-structure for
J . An M-evaluation of object variables is a mapping u assigning to each object
variable x an elements u(x) ∈ M . Let u, u′ be two evaluations. u ≡x u′ means
that u(y) = u′(y) for each variable y distinct from x. The value of a term given
by M, u is defined as follows: ‖x‖M,u = u(x), ‖c‖M,u = mc. We define the truth
value ‖φ‖LM,u of a formula. as follows:

‖P (t1, ..., tn)‖L
M,u = rP (‖t1‖M,u, ..., ‖tn‖M,u), ‖r̄‖L

M,u = r
‖φ&ψ‖L

M,u = ‖φ‖L
M,u ∗ ‖ψ‖L

M,u, ‖φ → ψ‖L
M,u = ‖φ‖L

M,u ⇒ ‖ψ‖L
M,u

‖(∃x)φ‖L
M,u = sup{‖φ‖L

M,u′ |u ≡x u′} ‖(∀x)φ‖L
M,u = inf{‖φ‖L

M,u′ |u ≡x u′}

At last a rule is interpreted as: ‖φ→ ψ‖M,u = 1

Observe that since fuzzy rules are in general not equivalent fuzzy implica-
tions, as it is also the case in classical rules, we have interpreted rules as fuzzy
implications which are 1-tautologies, i.e. their truth value is 1, in each safe L-
structure M and each M-valuation of object variables. Since in our case we use
R-implications the above equation further means that ‖φ‖LM,u ≤ ‖ψ‖LM,u.

Logics like the one presented above is often referred to as Rational Pavelka
predicate logic (RPL∀). The reader is referred to [11] for more information on
these logics.

5 Discussion

Recently, a lot of interest towards dealing with uncertainty, like imprecision and
vagueness (fuzzyness), in the semantic web context has been demonstrated. It is
well established in the AI community that dealing with such type of information
yields more intelligent and realistic applications. Since rules will also play an
important role in the realization of the semantic web and its wider acceptance
by the industry community, the need for dealing with uncertainty in rule systems
is evident. The idea of adding fuzzyness in logic programs is not new. Several
approaches to fuzzy logic programming have been presented [12–15]. Recently
the interest has been extended to the semantic web where both fuzzy descrip-
tion logics [16] and fuzzy rules, are integrated providing a fuzzy extension to

Uncertainty and RuleML Rulebases: A Preliminary Report 203

the SWRL language [17]. In the current paper we have extended the RuleML
framework in order to make it capable to represent and handle imprecise and
vague information. We showed that the syntactic changes that need to take place
are minimal and only regard facts.

References

1. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., eds., L.A.S.: OWL Web Ontology Language Reference (2004)

2. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: A Semantic Web Rule Language — Combining OWL and RuleML. W3C
Member Submission, http://www.w3.org/Submission/SWRL/ (2004)

3. Boley, H., Dean, M., Grosof, B., Sintek, M., Spencer, B., Tabet, S., Wagner, G.:
FOL RuleML: The First-Order Logic Web Language. W3C Member Submission,
http://www.w3.org/Submission/FOL-RuleML/ (2005)

4. Bechhofer, S., Goble, C.: Description Logics and Multimedia - Applying Lessons
Learnt from the GALEN Project. In: KRIMS 96 Workshop on Knowledge Repre-
sentation for Interactive Multimedia Systems, ECAI 96, Budapest (1996)

5. Stoutenburg, S., Obrst, L., Nichols, D., Peterson, J., Johnson, A.: Toward a stan-
dard rule language for semantic integration in the dod enterprise, W3C Workshop
on Rule Languages for Interoperability (2005)

6. Chen, H., Fellah, S., Bishr, Y.: Rules for geospatial semantic web applications,
W3C Workshop on Rule Languages for Interoperability (2005)

7. Zadeh, L.A.: Fuzzy sets. Information and Control 8 (1965) 338–353
8. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications.

Prentice-Hall (1995)
9. Klement, E., Navara, M.: A survey of different triangular norm-based fuzzy logics.

Fuzzy Sets and Systems 101 (1999) 241–251
10. Hirtle, D., Boley, H., Grosof, B., Kifer, M., Sintek, M., Tabet, S., Wagner, G.:

Schema Specification of RuleML 0.89. http://www.ruleml.org/0.89/ (2005)
11. Hajek, P.: Metamathematics of fuzzy logic. Kluwer (1998)
12. Vojtás, P.: Fuzzy logic programming. Fuzzy Sets and Systems 124 (2001) 361–370
13. Ebrahim, R.: Fuzzy logic programming. Fuzzy Sets and Systems 117 (2001) 215–

230
14. Cao, T.: Annotated fuzzy logic programs. Fuzzy Sets and Systems 113 (2000)

277–298
15. Damásio, C.V., Pereira, L.M.: Monotonic and residuated logic programs. In:

Proceedings of the 6th European Conference on Symbolic and Quantitative Ap-
proaches to Reasoning with Uncertainty, Springer-Verlag (2001) 748–759

16. Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J., Horrocks, I.: A fuzzy description
logic for multimedia knowledge representation, Proc. of the International Workshop
on Multimedia and the Semantic Web (2005)

17. Pan, J.Z., Stamou, G., Tzouvaras, V., Horrocks, I.: f-SWRL: A Fuzzy Extension
of SWRL. In: Proc. of the International Conference on Artificial Neural Networks,
Special section on “Intelligent multimedia and semantics”. (2005) To appear.

Nested Rules in Defeasible Logic

Insu Song and Guido Governatori

School of Information Technology & Electrical Engineering
The University of Queensland, Brisbane, QLD, 4072, Australia

{insu,guido}@itee.uq.edu.au

Abstract. Defeasible Logic is a rule-based non-monotonic logic with tractable
reasoning services. In this paper we extend Defeasible Logic with nested rules.
We consider a new Defeasible Logic, called DLns, where we allow one level of
nested rules. A nested rule is a rule where the antecedent or the consequent of
the rule are rules themselves. The inference conditions for DLns are based on
reflection on the inference structures (rules) of the particular theory at hand. Ac-
cordingly DLns can be considered an amalgamated reflective system with implicit
reflection mechanism. Finally we outline some possible applications of the logic.

1 Introduction

Nested rules arise naturally in our daily reasoning activities and in many applications:
from artificial societies and normative reasoning, to configuration systems to security.
Every time we have policies that are represented as sets of rules we have to consider the
possibility that a policy contains rules about itself.

For instance, we often make decisions or classify objects based on some conse-
quence relations. For example, in security, the usual definition of confidentiality is that
a piece of information is regarded as confidential for an organization when the release
of it would harm the interest of the organization. This can be formally written as:

(Disclosed(x)⇒ HarmInterest)⇒ Confidential(x).

In addition the security policy can give conditions (sometimes explicitly, sometime im-
plicitly) about when the disclosure of a piece of information will harm the interest of
the organization. In similar way many normative concepts frequently used in contracts,
such as for example, delegation, empowerment, require definitions based on nested
rules (see, for example, [1]).

In other cases, we often have rule dependencies that rule r2 is placed in a system
only when rule r1 holds in the system:

r1→ r2.

These dependencies are usually stored outside of the system. If rule dependencies can
be expressed directly in the system, then r2 can be removed automatically whenever r1
does not hold in the system providing automatic system maintenance functionality. This
feature is also useful in system integration because it allows context dependant rules.

A. Adi et al. (Eds.): RuleML 2005, LNCS 3791, pp. 204–208, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Nested Rules in Defeasible Logic 205

One major problem for adding nested rule expressions to any knowledge repre-
sentation system is defining a proper evaluation of the nested rules. Evaluating the
nested conditionals based on the material conditional fails miserably. The paradoxes
associated with the material conditional are well known. For example, (Disclosed(x)⊃
HarmInterest) is logically equivalent to (¬Disclosed(x)∨HarmInterest) so that the fol-
lowing statements are logically true:

1. If x is not disclosed x is confidential.
2. If interest is harmed by any reason, x is confidential.

In this paper we present DLns, which is a defeasible logic (DL) with nested rules
and rule provability (see [2] for an introduction to defeasible logic). DLns allows one
level of nesting of rules both in the antecedent and the consequent of non-monotonic
statements.

The next section presents the proof theory of DLns. Then we show an example
illustrating the use of nested rules. We conclude the paper with some remarks.

2 DLns: DL with Singly Nested Rules

In this section we outline a defeasible logic with singly nested rules (DLns) which ad-
mits one level of nesting of rules. A nested rule is a rule in the antecedent or the conse-
quent of another rule. For example, (a→ b)→ (c→ d) has two nested rules: (a→ b)
in the antecedent and (c → d) in the consequent. Rules in a DLns theory can contain
nested rules, but nested rules cannot contain nested rules.

As in a standard defeasible logic (DL), a DLns theory is a triple (F,R,") where
F is a set of literals (called facts), R is a finite set of rules, " is a superiority relation
on R. For the definitions of literal and superiority relation ", refer to [2]. A relation
r : (A(r),C(r)) consists of its unique label r, its antecedent A(r) which is a finite set
of literals and nested rules, and its consequent C(r) which is either a literal or a nested
rule. A relation just says that C(r) depends on A(r). A rule r↪→ (i.e., A(r) ↪→ C(r)) is
a relation r with a rule type ↪→ specified. Replacing the placeholder ↪→ with the three
rule types defined in DL yields three kinds of rules: r→ is a strict rule in the form of
A(r)→C(r); r⇒ is a defeasible rule in the form of A(r)⇒C(r); r� is a defeater rule
in the form of A(r) � C(r). For example, a rule (p ⇒ q) consists of its antecedent
A(r) = {p}, its consequent C(r) = q, and its rule type⇒. A literal l is a strict rule with
the antecedent the empty set and the consequent the literal itself: {} → l. Given a rule
r↪→, the negation of r↪→, (N(r↪→)) is the rule (A(r)⇒∼C(r)). In Section 2.1 we will
provide an intuition for this definition.

In DL, each type of rules represents a different strength of dependency between
antecedents and consequents. We define rule strength order by which rules with the
same relation can be ordered as follows:

r→ > r⇒ > r�

where r→ is a strict rule, r⇒ is a defeasible rule, r⇒ is a defeater, and r is a relation.
The rules with the same rule types and relations have the same rule strength. Thus, rules

206 Insu Song and Guido Governatori

with the same relation can be compared for their strength. For example, the following
statements are true: r→ ≥ r⇒, r⇒ ≥ r⇒, r→ ≥ r�. Since a literal l is a strict rule {}→ l,
the following statements are true as well: l = ({}→ l), l > ({}⇒ l), l > ({}� l).

The final consequent of a relation r is the right most consequent. For example, the
final consequent of a→ (b→ c) is c. If r is a literal, the final consequent of r is r itself.
A(r)q is the union of antecedents in r for the consequent q. That is, A(r)q is the set of
premises that need to be satisfied to conclude q. A(r)q is formally defined as follows:

A(r)q =

{
A(r) If C(r) = q

A(r)∪A(C(r)) If C(C(r)) = q

For example, given r = a→ (d → e), we have A(r)(d→e) = {a} and A(r)e = {a,d}.
Given a set R of rules, we denote the set of all strict rules in R by Rs and the set of

strict rules and defeasible rules in R by Rsd . R[q] denotes the set of rules in R of which
q is either the consequent or the final consequent. For example, given R={a→ (b →
c),d → c}, we have R[c]=R and R[b→ c]={a→ (b→ c)}.

R[q]↪→ is the set of rules satisfying the conditions of R[q] and that all the rule
strengths toward q are stronger than or equal to ↪→. For example: given R={a→ (b→ c),
a→ (b⇒ c), a→ (b � c)}, we have R[c]→={a→ (b→ c)}, R[c]⇒={a→ (b→ c),a→
(b⇒ c)}, and R[(b � c)]→={a→ (b � c)}.

2.1 Proof Theory

In order to make the presentation concise, in this paper we only consider DLns theories
that R does not contain defeaters and rules with the empty set as their antecedent, such
as {}→ p.

Unlike DL, a conclusion of a DLns theory is a tagged rule instead of just a tagged
literal. Since a literal is considered a strict rule in DLns, this representation of conclu-
sions includes tagged literals as well. The same set, {+Δ ,−Δ ,+∂ ,−∂}, of tags defined
in DL is used in DLns with the exact same meaning.

In the course of derivations we will make use of auxiliary (sub) theories of a basic
theory, and the elements of a derivation refer to these auxiliary (sub) theories. Thus
given a theory D and a tagged literal ±#q, we use the notation D(±#q) to indicate that
the tagged literal ±#q has been derived/refers to the theory D.

Provability is defined below. It is based on the concept of a derivation (or proof) in
D = (F,R,") as in DL. A derivation is a finite sequence P = (P(1), . . . ,P(n)) of tagged
rules (or literals) satisfying the following conditions (P(1..i) denotes the initial part of
the sequence P of length i):

+Δ : P(i+ 1) = D(+Δq) if
(1) ∃s ∈ R∪F such that s≥ q or
(2) ∃t ≥ q ∃s ∈ Rs[t]→ ∀a ∈ A(s)t : D(+Δa) ∈ P(1..i) or
(3) For D′ = (A(q),Rs, /0), D′(+ΔC(q)) ∈ P(1..i).

To show that a rule (or a literal) q is definitely provable in D, i.e., D(+Δq), we have
three choices: (1) we show that a rule at least as strong as q is a rule of D; or (2) we

Nested Rules in Defeasible Logic 207

show that a rule at least as strong as q can be deduced only from strict rules; or (3) we
show that the consequent of q is provable definitely in the new theory D′ consisting of
the supposition (the antecedent of q) and the strict rules of D.

+∂ : P(i+ 1) = D(+∂q) if
(1) D(+Δq) ∈ P(1..i) or
(2)(2.1) ∃u≥ q ∃r ∈ Rsd[u] ∀a ∈ A(r)u:D(+∂a) ∈ P(1..i) and

(2.2) D(−ΔN(q)) ∈ P(1..i) and
(2.3) ∀v≥ N(q) ∀s ∈ R[v] either

(2.3.1) ∃a ∈ A(s)v: D(−∂a) ∈ P(1..i) or
(2.3.2) ∃u≥ q ∃t ∈ Rsd[u] ∀a ∈ A(t)u: D(+∂a) ∈ P(1..i) and t " s or

(3) For D′ = (A(q),R,"), D′(+∂C(q)) ∈ P(1..i).

To show that a rule (or a literal) q is defeasibly provable in D, i.e., D(+∂q), we
have three choices: (1) we show that q is already definitely provable; or (2) we show
that a rule at least as strong as q is defeasibly deduced from the defeasible part of D and
that “attacks”, which are reasoning chains in support of N(q), are either not provable
or defeated (i.e., they are weaker than appliccable rules for the conclusion we want to
prove); or (3) we show that the consequent of q is defeasibly provable from an auxiliary
theory D′ consisting of the supposition (the antecedent of q) and all the rules of D. In
(2.2) and (2.3), unlike DL, we consider reasoning chains in support of (A(q)⇒∼C(q))
as “attacks” instead of ∼q. This is just one of the possible interpretations of a negation
of a rule that has been considered in this paper. An argument for this is that one would
be reluctant to accept +∂ (a → b) (and/or +∂ (a ⇒ b)) if any of the followings are
supported: +Δ(a → ∼b), +Δ(a ⇒ ∼b), +∂ (a → ∼b), or +∂ (a ⇒ ∼b). Another
possible interpretation of N(r) is that the rule is not present in the theory. However, we
do not pursue this interpretation here since it treats negation of literals and negation of
rules differently.

The conditions for negative provability (−Δ and −∂) can be constructed similarly
following the principle of strong negation described in [2]. Thus, given the limited
space, they are not presented here.

2.2 An Example

Let us consider the following scenario. A company has the policy that all confidential
documents must be encrypted when they are sent by email, and no confidential docu-
ment can be sent to people outside the company. A document is classified as confidential
when its disclosure would harm the interests of the company. Let us suppose we have
a document d describing the details of an application for a patent. Here we have that if
the document is disclosed before the grant of the patent then the knowledge in it will be
classified as public domain, and if something is public domain, other concurrent com-
panies can use the technology described in the document. But if other companies use
the technology, then its usage will generate less revenue than if it were secret and this
will harm the interest of the company. This scenario can be described in a very natural
fashion by the following DLns theory (in this example we use rule schemas, where each
rule must be understood as the set of its ground instances):

208 Insu Song and Guido Governatori

r1: (Disclose(x)⇒HarmInterests)⇒ Confidential(x)
r2: Confidential(x)⇒ Encrypt(x)
r3: Disclose(x)⇒ PublicDomain(x)
r4: PublicDomain(x)⇒ FreeUseOf (x)
r5: FreeUseOf (x)⇒ LessRevenue(x)
r6: LessRevenue(x)⇒ HarmInterests

Now the question is whether a document describing a pending patent must be en-
crypted. To prove Encrypt(d) we have to determine whether the document is classified
as confidential. In this case we have to see whether we can prove the antecedent of the
rule giving the condition to determine whether a document is confidential or not. Thus
we have to use the rules in the theory to verify whether there is a relationship between
the disclosure of the document and the potential harm caused to the interests of the com-
pany. In this case we assume hypothetically the Disclose(x) holds and we try to derive
HarmIntersts. This derivation succeeds and thus we can prove that the document must
be encrypted.

3 Conclusion

We presented an extension of Defeasible Logic called DLns, which admits one level of
nesting of rules both in the antecedent and the consequent of non-monotonic rules. It is
constructed to demonstrate the general idea of our approach in developing DLn, which
accepts arbitrary nesting of rules such as (a→ (b⇒ c))→ d.

In the derivation of rules, our approach ensures appropriate connections between
the antecedent and consequent of the rule as in relevant logic (see [3]) by insisting on
relevance between antecedents and consequents by explicit rules being present in the
theory for evaluating the rules.

We have introduced the concept that rules with the same relations can be ordered
by their rule strengths (rule types). Using this concept and the requirement for an ap-
propriate consequence connection between the antecedent and consequent of a rule, we
have defined provability for both rules and literals. The provability condition is simple
and it allows nested rule expressions and provides additional forms of conclusions such
as +Δr→ and +∂ r⇒.

References

1. Gelati, J., Governatori, G., Rotolo, A., Sartor, G.: Normative autonomy and normative co-
ordination: Declarative power, representation, and mandate. Artificial Intelligence and Law
12(1-2) (2004) 53–81

2. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: A flexible framework for defeasi-
ble logics. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence
and Twelfth Conference on Innovative Applications of Artificial Intelligence, AAAI Press /
The MIT Press (2000) 405–410

3. Anderson, A.E., Belnap, N.D.: Entailment: the Logic of Relevance and Necessity Vol 1.
Princeton University Press (1975)

A. Adi et al. (Eds.): RuleML 2005, LNCS 3791, pp. 209–217, 2005.
© Springer-Verlag Berlin Heidelberg 2005

ContractLog: An Approach to Rule Based Monitoring
and Execution of Service Level Agreements

Adrian Paschke1, Martin Bichler1, and Jens Dietrich2

1 Internet-based Information Systems, Technische Universität München
{Paschke,Bichler}@in.tum.de

2 Information Sciences & Technology, Massey University
J.B.Dietrich@massey.ac.nz

Abstract. In this paper we evolve a rule based approach to SLA representation
and management which allows separating the contractual business logic from
the application logic and enables automated execution and monitoring of SLA
specifications. We make use of a set of knowledge representation (KR) con-
cepts and combine adequate logical formalisms in one expressive formal
framework called ContractLog.

1 Introduction

Service Level Management (SLM) and Service Level Agreements (SLAs) are of
growing commercial interest with a deep impact on the strategic and organisational
processes as intensified interest in accepted management standards like ITIL1 or the
new BS150002 shows. Additionally, IT virtualisation and upcoming flexible IT infra-
structures like e.g. new middleware products, storage area networks or grids services
pave the way for new service oriented business models (e.g. “on-demand”, “pay-per-
use”, “utility computing”) with flexible and more individual contracts. [1] This needs
new levels of flexibility and automation in SLA management not available with the
current technology and tools [2, 3]. This paper proposes a rule based representation of
SLAs using sophisticated, logic-based knowledge representation (KR) concepts as an
alternative to natural language defined contracts or pure procedural implementations
in programming languages such as Java or C++. We combine selected adequate logi-
cal formalisms in one expressive framework called ContractLog with which to de-
scribe formal rule based contract specifications which can be automatically monitored
and executed. The essential advantages of ContractLog are:

1. Contract rules are separated from the service management application. This allows
easier maintenance and management and facilitates contract arrangements which
are adaptable to meet changes to service requirements dynamically with the
indispensable minimum of service execution disruption at runtime, even possibly
permitting coexistence of differentiated contract variants.

2. Rules can be automatically linked (rule chaining) and executed by rule engines in
order to enforce complex business policies and individual and graduated contrac-
tual agreements.

1 IT Infrastructure Library (ITIL): www.itil.co.uk
2 BS15000 IT Service Management Standard: www.bs15000.org.uk

210 Adrian Paschke, Martin Bichler, and Jens Dietrich

3. Test-driven validation and verification methods can be applied to determine the
correctness and completeness of contract specifications against user requirements
[4] and large rule sets can be automatically checked for consistency. Additionally,
explanatory reasoning chains provide means for debugging and explanation. [5]

4. Contract norms like rights and obligations can be enforced and contract violations
can be (proactively) detected and treated via automated monitoring processes and
hypothetical reasoning. [5]

The rest of the paper is structured as follows. In section 2 we define the require-
ments for a logic based rule language capable of representing, monitoring and enforc-
ing service contracts. In section 3 we present an overview of our solution to meet
these requirements – the ContractLog framework. In section 4 we describe our im-
plementation effort based on the open source rule engine Mandarax and compare our
rule based approach to common procedural implementations. Further information on
our implementation and more details on the applied logical formalisms can be found
in [3, 5, 6] and on our project web site [7]. Finally, in section 6 we conclude this
paper with a short summary and an outlook on the higher level Rule Based SLA
language: RBSLA [7].

2 Requirements

We analyzed several real world SLAs from different service providers in different
branches and several commercial tools like e.g. Tivoli SLA, in order to identify the
problems and to derive the requirements on an adequate, automated SLA representa-
tion language. The two main problems which we found are:

1. In many companies SLAs are informally described in natural language. This leads
to simplified SLA rules and many manual processes in management and monitor-
ing of SLAs.

2. Existing SLM tools with their hard coded application logic and common reference
models like ITIL are too little automated, flexible and adaptable.

As a consequence SLA management needs new ways of knowledge representation
for contractual agreements and new technical solutions for contract monitoring and
enforcement. Beside basic information about the roles of the parties, the contract life
time, the agreed services, etc. SLAs contain (business) rules on rights and obligations,
prices and costs, quality of service (QoS) and service levels, penalties for contract
violations, termination conditions etc. Automated monitoring and execution of such
rules requires formalization of the rule syntax. Logic-based rule languages and dedi-
cated rule engines can be used to solve this task [2, 3]. However, SLAs have a num-
ber of requirements regarding an adequate knowledge representation. Figure 1 shows
the main requirements. For a detailed description of these and further requirements
not listed here see [6].

3 The ContractLog Framework

Table 1 summarizes the main concepts used in ContractLog, our solution to the re-
quirements identified in section 2 (see fig. 1).

ContractLog 211

1. Rule chaining
2. Default rules
3. Rule prioritization
4. Contract modularization
5. External data integration
6. Procedural attachments
7. OO type system and integration of business objects
8. Semantic (business) vocabularies and domain descriptions
9. Situated processing of events and actions

10. Temporal reasoning on events and their effects
11. Contract norms on an individual and group level
12. Verification, validation and conflict resolution
13. Declarative rule syntax and rule serialization

Fig. 1. Main requirements on a declarative rule language

Table 1. Main logic concepts of ContractLog

Logic Usage
Derivation rules (horn logic with NaF) Enables deductive reasoning on business rules.
Event-Condition-Action rules (ECA) Active event detection and situative behaviour by event-

triggered executable actions.
Event Calculus (temporal reasoning) Temporal reasoning about dynamic systems, e.g. effects

of events on the contract state.
Defeasible logic / GCLP (priorities) Default rules and priority relations of rules. Facilitates

conflict detection and resolution as well as revision/
updating and modularity of rules.

Deontic logic Enables representing rights and obligations as deontic
contract norms „permission, prohibition, obligation“.

Description logic Enables semantic domain descriptions (e.g. contract
ontologies) to hold rules domain independent. Facilitate
exchangeability and interpretation.

Procedural object-oriented logic / procedural attach-
ments

Procedural attachments integrate object oriented pro-
gramming into declarative rules. Merits the benefits of
procedural logic (e.g. Java EJBs) and declarative logic
programming (representing business logic).

In the following we want to describe the main formalism used in ContractLog.
More information can be found in [1-3, 5, 6] and on our project site [1].

Derivation Rules with Procedural Attachments and External Data Integration
Derivation rules based on horn logic supplemented with negation as failure (NaF) and
rule chaining enable a compact representation and a high level of flexibility in auto-
matically combining rules to form complex business policies and graduated contract
rules [3, 8]. On the other hand procedural logic as used in programming languages is
highly optimized in solving computational problems - however, with the disadvan-
tage that the complete control flow must be implemented. Procedural attachments and
the use of a typed logic3 offer a clean way of integrating programming languages into
logic based rule execution paving the way for intelligently accessing or generating
data for which the highest level of performance is needed and the logical component

3 ContractLog supports typed variables and constants based on the object-oriented type system

of Java

212 Adrian Paschke, Martin Bichler, and Jens Dietrich

is minimal. This includes accessing external databases using optimized query lan-
guages like SQL to temporarily populate the knowledge base with the needed facts
for the inference processes at query time. After the query has been answered (using
backward reasoning) these facts can be discarded from memory and therefore replica-
tion of data is not necessary any more, which is crucial, as in SLA management we
are facing a knowledge intensive domain which needs flexible data integration from
multiple rapidly changing data sources, e.g. business data from data warehouses,
system data from system management tools, process data from work flows, domain
data from ontologies etc. Additionally, the tight integration with Java enables
(re-)using existing business objects implementations such as EJBs and system man-
agement tools.

ECA Rules
A key feature of a SLA monitoring system is its ability to actively detect and react to
events and many rules in SLAs are basically Event Condition Action (ECA) rules,
e.g.: “If the service becomes unavailable (Event) then send a notification message to
the service administrator (Action)”. We implemented support for active ECA rules in
our backward reasoning system based on an independent daemon process, which
monitors all ECA rules by periodically querying the rule base using a thread pool for
parallel execution of rules. We represent an ECA rule as a derivation rule:
eca(T,E,C,A). Each term T (time), E (event), C (condition) and A (action) references
to a further derivation rule which implements the respective functionality of the term.
The additional term T (time) is introduced to define the monitoring inter-
vals/schedules in order to control monitoring costs for each rule. Example:

eca(everyMinute, serviceUnavailable, notScheduledMaintanance, sendNotification)
everyMinute(DT) … serviceUnavailable(DT) … notScheduledMaintanance(DT) … sendNotification(DT) …

Rule chaining combining derivation rules can be used to build complex functional-
ities, which can be referenced from several ECA rules. More details on the ECA im-
plementation can be found in [6].

Event Calculus
The Event Calculus (EC) [9] is a formalism for temporal reasoning about events and
their effects on a knowledge system. It defines a model of change in which events
happen at time-points and initiate and/or terminate time-intervals over which some
properties (time-varying fluents) of the world hold. We implemented the classical
logic formulations using horn clauses and made some extensions to the core set of
axioms to represent derived fluents, delayed effects (e.g. countdowns, validity time of
norms), continuous changes (e.g. time-based counter) and epistemic knowledge
(planned events e.g. for hypothetical reasoning) [5, 6]:

Classical Domain independent predicates/axioms ContractLog Extensions
happens(E,T) event E happens at time point T
initiates/terminates(E,F,T) event E initiates/terminates fluent F
holdsAt(F,T) fluent F holds at time point T

valueAt(P,T,X) parameter P has value X at time point T
planned(E,T) event E is believed to happen at time point T
occurred(E,T) event E actually happened
derivedFluent(F) derived fluent F

The EC and ECA can be combined and used vice versa, for example fluents (hold-
sAt) can be used in the condition parts of ECA rules or ECA rules can be used to
persistently assert detected events to the EC knowledgebase and define e.g. ECA

ContractLog 213

rules with post conditions (a.k.a. ECAP rules). The EC enables us to model the ef-
fects of events on changeable SLA properties (e.g. deontic contract norms describing
rights and obligations) and to reason about the contract state at certain time points. In
addition we can define complex state transition rules similar to workflows. This is
very useful for deontic contract norms, e.g., for representing violations of norms (e.g.
violation of fulfilling an obligation in a defined period).

Deontic Logic
Deontic Logic (DL) studies the logic of normative concepts such as obligation (O),
permission (P) and prohibition (F). However, classical standard deontic logic (SDL)
offers only a static picture of the relationships between co-existing norms and does
not take into account the effects of events on the given norms and coherences between
norms, e.g. violations of norms. Another limitation is the inability to express person-
alized statements. In real world applications deontic norms refer to an explicit con-
cept of an agent. These limitations make it difficult to satisfy the needs of practical
contract management. Therefore, we extended the concepts of DL with a role-based
model and integrated it in our Event Calculus implementation in order to model the
effects of events on deontic norms and to represent coherences between deontic
norms. [5] A deontic norm consists of the normative concept (norm), the subject (S)
to which the norm pertains, the object (O) on which the action is performed and the
action (A) itself. We represent a role based deontic norm (Ns,oA) as an EC fluent:
norm(S, O, A), e.g. inititates(e1, permit(s,o,a),t1). Additionally, we implemented typical
DL inference axioms in ContractLog, e.g.: Os,oA Ps,oA: holdsAt(permit(S,O,A),T) hold-
sAt(oblige(S,O,A),T) or Fs,oA Ws,oA: holdsAt(waived(S,O,A),T) holdsAt(forbid(S,O,A),T) etc. and
additional rules to deal with deontic conflicts, violations of deontic norms and their
contrary-to-duty paradoxes, e.g. Authorization Conflict: holdsAt(authConflict(S,O,A),T)

holdsAt(permit(S,O,A),T). holdsAt(forbid(S,O,A),T). The tight combination of the time based
EC with role based deontic norms enables the definition of institutional power as-
signment rules (e.g. empowerment rules) for creating institutional facts which are
initiated by a certain event and hold until another event terminates them. Further we
can define complex coherences between norms in workflow like settings which ex-
actly define the actual contract state and all possible state transitions. In particular
derived fluents and delayed effects (with trajectories and parameters [5]) offer the
possibility to define violations of contract norms and their consequential secondary
norms e.g., conditional contrary-to-duty (CTD) obligations a.k.a. exceptions. A typi-
cal example which can be found in many SLAs is a primary obligation which must be
fulfilled in a certain period, but if it is not fulfilled in time, then the norm is violated
and a certain “reparational” norm is in force, e.g., a secondary obligation to pay a
penalty or a permission to cancel the contract etc. [5, 6] Example:

“If the service is unavailable, the SP is obliged to restore it within tdeadline. If the SP fails to restore the service in
tdeadline, (violation) the SC is permitted to cancel the contract (consequence).”
Representation in ContractLog
initiates(unavailable, oblige(SP, Service, start()),T) // defines the primary obligation initiated by an certain event
 terminates(available, oblige(SP, Service, start()),T) // defines the event which normally terminates the obligation
trajectory(oblige(SP,Service,start()),T1,deadline,T2,(T2 - T1)) // defines the period in which the obligation must be fulfilled
happens(elapsed,T) valueAt(deadline,T, tdeadline) // defines the violation event which happens when the deadline is
reached
initiates(elapsed, permit(SC, Contract, cancel()),T) // initiates the derived permission to cancel the contract

214 Adrian Paschke, Martin Bichler, and Jens Dietrich

Defeasible Logic
We adapt two basic concepts in ContractLog to solve conflicting rules (e.g. conflict-
ing positive and negative information) and to represent rule precedences: Nute’s de-
feasible logic (DfL) [10] and Grosof´s Generalized Courteous Logic Programs
(GCLP) [11]. There are four kinds of knowledge in DfL: strict rules, defeasible rules,
defeaters and priority relations. We base our implementation on the meta-program
found in [12] to translate defeasible theories into logic programs and extended it to
support priority relations r1>r2: overrides(r1,r2) and conflict relations in order to define
conflicting rules not just between positive and negative literals, but also between
arbitrary conflicting literals. Example:

Rule1 “discount”: All gold customers get 10 percent discount.”
Rule2 “nodiscount”: Customers who have not paid get no discount.”
ContractLog DfL: … overrides(discount, nodiscount) … // rule 1 overrides rule 2

GCLP is based on concepts from DfL. It additionally implements a so called Mutex to
handle arbitrary conflicting literals. We use DfL to handle conflicting and incomplete
knowledge and GLCP for prioritisation of rules. A detailed formulation of our im-
plementation can be found in [6].

Description Logics
Inspired by recent approaches to combine description logics and logic programming
[13, 14] we have implemented support for RDF/RDFS/OWL descriptions to be used
in ContractLog rules. At the core of our approach is a mapping from RDF triples
(constructed from RDF/XML files via a parser) to logical facts: RDF triple:subject predi-
cate object LP Fact: predicate(subject, object), e.g.:

 Ca : , i.e., the individual a is an instance of the class C: type(a,C)
Pba :, >< , i.e., the individual a is related to the individual b via the property P: property(P,a,b)

On top of these facts we have implemented a rule-based inference layer and a class
and instance mapping4 [7] to answer typical DL queries (RDFS and OWL Lite/DL
inference) such as class-instance membership queries, class subsumption queries,
class hierarchy queries etc. For example:

RDFS inference examples:
DC ⊆ , i.e., class C is subclass of class D: type(a, D) subClassOf(C,D), type(a,C)
PQ ⊆ , i.e., Q is a subproperty of P: property(Q,a,b) subPropertyOf(Q,P), property(P,a,b)

CPT .∀⊆ ,i.e., the range of property P is class C: type(b,C) <-- range(P, C), property(P, a, b)
CPT `.∀⊆ ,i.e., the domain of property P is class C: type(b,C) <-- range(P, C), property(P, a, b) etc.

OWL inference examples:
DC ≡ , i.e., class C is equivalent to class D: type(a,C) <-- equivalentClass(C, D), type(a,D)

 type(a,D) <-- equivalentClass(C, D), type(a,C)
P + P⊆ i.e., property P is transitive: property(P,a,c) type(P,"owl:TransitiveProperty"),property(P, a,b),property(P,b,c) etc.

This enables reasoning over large scale DL ontologies and it provides access to onto-
logical definitions for vocabulary primitives (e.g. properties, class variables and indi-

4 To avoid backward-reasoning loops in the inference algorithms

ContractLog 215

vidual constants) to be used in LP rules. In addition to the existing Java type system,
we allow domain independent logical objects in rules to be typed with external on-
tologies (taxonomical class hierarchies) represented in RDF, RDFS or OWL.

4 Implementation and Discussion
We implemented the ContractLog framework based on the backward-reasoning rule
engine Mandarax [8] and the Prova language extension [15], which provides a Prolog
related syntax. Mandarax is an open source java-based rule engine for backward rea-
soning derivation rules. It provides a typed logic (typed rule terms) and procedural
attachments which wrap java methods. This allows combining the benefits of LP and
object-oriented programming and provides a high level of flexibility and automation.
It offers the option to restrict the applicability of rules and to control the level of gen-
erality in queries and most importantly it makes possible the desired tight integration
of Java code into logical rules, e.g. using monitoring functions from existing system
management tools and delegating computation intensive tasks to Java (e.g. for com-
puting average performance values and service levels), or triggering action function-
alities from existing business object implementations like EJBs in ECA rules. Addi-
tionally, it supports clause sets to ground rules on data stored in external databases.
This enables integrating facts from external databases (e.g. a data warehouse) via
highly optimized query languages such as SQL into rule executions. Because we are
using well understood and sound logic formalism and implement them on the basis of
horn logic our logic framework stays computational tractable and efficient although it
provides rich expressiveness.

In contrast to procedural programming approaches where the control flow must be
completely implemented, the logic based rule approach allows a more compact repre-
sentation of SLAs. Additionally, dynamic reaction on external events with ECA rules
and temporal conclusions about their effects on the contract state, e.g. on rights, obli-
gations or violations are enabled by computational models like the Event Calculus. A
static procedural code representing this type of temporal event based logic would
have been much more cumbersome to implement and maintain. Other examples are
graduated rules e.g. graduated penalty rules for missing certain availability levels,
dynamic rules, e.g. to adapt to special situations or complex coherences between
rules. From these examples it is easy to see why the declarative style of logic pro-
gramming can be superior to pure procedural languages in situations when flexibility
and code economy are required to represent business logic which is likely to change
over time.

5 Conclusion and Outlook
In this paper we have describe a rule based approach to SLA representation and man-
agement. We have summarized the requirements on an adequate representation lan-
guage and evolved our ContractLog framework on the basis of horn rules and meta
programming techniques to solve this needs. In contrast to conventional pure proce-
dural programming approaches our logic based approach simplifies maintenance,
management and execution of SLA rules and allows easy combination and revision of
rule sets to build sophisticated and graduated contract agreements, which are more

216 Adrian Paschke, Martin Bichler, and Jens Dietrich

suitable in a dynamic service oriented environment than the actually applied, simpli-
fied rules and the less adaptable procedural management tools. However, real usage
of a representation language which is usable by others than its inventors immediately
makes rigorous demands on the syntax: e.g. comprehension, readability and usability
of the language by users, compact representation, exchangeability with other formats,
means for serialization, tool support in writing and parsing rules etc. and in particular
a declarative syntax. We try to address these requirements with our superimposed
declarative Rule Based SLA language RBSLA [7], which is implemented on top of
ContractLog. It adapts and extends RuleML [16] to the needs of the SLA domain.
The main additional features we introduce are: (1) definitions and terms defining the
meaning of the concepts used in SLAs by referencing on external contract vocabular-
ies and semantic ontologies (RDFS/OWL); (2) ECA rules including monitoring
schedules/intervals, active event monitoring/measurement functions and actively
triggered, executable actions; (3) deontic personalized contract norms with conse-
quential violations and penalties triggered by time based events; (4) integration of
external data and system/object functionalities via procedural attachments, clause sets
and typed constants and variables (Java or RDFS/OWL); (5) modularization of con-
tract structures and rule sets including defeasible rules and priority relations; This
includes a transformation implementation which maps the declarative RBSLA into
executable ContractLog rules (Prova/Prolog syntax) and additionally performs valida-
tion, optimization and refactoring of the declarative rule sets during this process.

References

1. Bichler, M., Diernhofer, N., Fay, F., König, C., MacWilliams, A., Paschke, A., Setzer, T.,
Völk, G., Dynamic Value Webs for IT-Services: IT-Service Technologies and Management.
2004, Siemens SBS / TUM, research study, 10/2004: Munich.

2. Paschke, A. and M. Bichler, Rule-based Languages for the Representation of Electronic
Contracts - A concept for using Knowledge-based Systems in the Development of flexible
Internet-based Information Systems. (in german language). 04/2003, IBIS, TUM, Working
Paper.

3. Paschke, A., Rule Based SLA Management - A rule based approach on automated IT ser-
vice management (in german language). 6/2004, IBIS, TUM, Working Paper.

4. Dietrich, J. and A. Paschke. On the Test-Driven Development and Validation of Business
Rules. in ISTA05. 2005.

5. Paschke, A. and M. Bichler. SLA Representation, Management and Enforcement - Com-
bining Event Calculus, Deontic Logic, Horn Logic and Event Condition Action Rules. in
EEE05. 2005. Hong Kong, China.

6. Paschke, A., ContractLog - A Logic Framework for SLA Representation, Management and
Enforcement. 7/2004, IBIS, TUM.

7. Paschke, A., RBSLA: Rule-based SLA, http://ibis.in.tum.de/staff/paschke/rbsla/index.htm.
2005.

8. Dietrich, J. A Rule-Based System for eCommerce Applications. in KES 2004. 2004.
9. Kowalski, R.A. and M.J. Sergot, A logic-based calculus of events. New Generation Com-

puting, 1986. 4: p. 67-95.
10. Nute, D., Defeasible Logic, in Handbook of Logic in Artificial Intelligence and Logic

Programming Vol. 3, D.M. Gabbay, C.J. Hogger, and J.A. Robinson, Editors. 1994, Oxford
University Press.

ContractLog 217

11. Grosof, B.N., A Courteous Compiler From Generalized Courteous Logic Programs To Or-
dinary Logic Progams. IBM, 1999.

12. Antoniou, G., et al. A flexible framework for defeasible logics. in AAAI-2000. 2000.
13. Levy, A. and M.-C. Rousset. A Representation Language Combining Horn Rules and

Description Logics. in ECAI96. 1996.
14. Grosof, B.N., et al. Description Logic Programs: Combining Logic Programs with De-

scription Logic. in WWW03. 2003: ACM.
15. Kozlenkov, A. and M. Schroeder, Prova. 2004, http://comas.soi.city.ac.uk/prova/.
16. Wagner, G., S. Tabet, and H. Boley. MOF-RuleML: The abstract syntax of RuleML as a

MOF model. OMG Meeting. 2003.

The OO jDREW
Reference Implementation of RuleML

Marcel Ball1, Harold Boley2, David Hirtle1,2, Jing Mei1,2, and Bruce Spencer2

1 Faculty of Computer Science, University of New Brunswick
Fredericton, NB, E3B 5A3, Canada

{maball,david.hirtle,jingmei.may}@gmail.com
2 Institute for Information Technology – e-Business

National Research Council of Canada
Fredericton, NB, E3B 9W4, Canada

{Harold.Boley,David.Hirtle,Jing.Mei,Brunce.Spencer}@nrc.gc.ca

Abstract. This paper presents the open source reference implementa-
tion of RuleML based on modular XML Schema definitions and bidirec-
tional OO jDREW interpreters written in Java. For the family of RuleML
sublanguages, schema modularization and RDF rules are discussed. The
central bidirectional interpreters are introduced via jDREW principles,
and explained w.r.t. OO jDREW slots, types, OIDs, and extensions.

1 Introduction

The syntax of RuleML derivation rules has been defined by XML Schema defini-
tions. The model-theoretic semantics of several RuleML sublanguages (including
Datalog, Hornlog, and Folog) is defined in the classical way; for sublanguages
with negation-as-failure, well-founded models have been proposed. We have im-
plemented the operational semantics of Derivation RuleML using XSLT trans-
lators and the bidirectional interpreter (the OO jDREW rule engine) described
in this paper. This reference implementation is available open source via the
RuleML and jDREW websites.

2 Modular Schemas for a Family of RuleML Sublanguages

The top-level of the current family of RuleML sublanguages shows the major dis-
tinction between Derivation Rules, including Hornlog above Datalog, and Action
Rules, including Production Rules. We focus here on various expressive classes
of Derivation Rules and their XML Schema Definitions (XSDs) as described in
the Modularization document. The most recent (public) schema specification of
RuleML is always available at http://www.ruleml.org/spec.

2.1 Schema Modularization

We employ modular XSDs, using a content model-based approach to take ad-
vantage of inheritance between schemas. Each expressive class syntactically dis-
tinguishable via an XSD (such as Datalog vs. Hornlog) can thus be addressed

A. Adi et al. (Eds.): RuleML 2005, LNCS 3791, pp. 218–223, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The OO jDREW Reference Implementation of RuleML 219

by the URI of its XSD. This permits receivers of a rulebase to validate if it con-
forms to the specified expressive class, before applying any class-specific tools
(such as a Datalog vs. Hornlog interpreter). Moreover, a syntactic class is asso-
ciated with a semantic class (such as Datalog vs. Hornlog with a function-free
vs. function-containing Herbrand model). The relationships between these ele-
ments of the model are either aggregation, e.g. “Datalog is part of Hornlog”, or
generalization, e.g. “Bindatalog is a Datalog”.

From an implementation perspective, elementary non-standalone modules
contain only element and/or attribute definitions and are not intended to be
used directly for validation. They may, however, be used to create new document
types by others wishing to “borrow” certain elements of RuleML. The actual
sublanguages, on the other hand, are schema drivers composed in whole or in
part of these modules or derived entirely from other schema drivers.

2.2 RDF Rules as Anchored, Slotted Datalog with Blank Nodes

As an important sublanguage example, the definition of RDF Rules can be in-
troduced in the following steps:

– Datalog is a language corresponding to relational databases (ground facts
without complex domains or “constructors”) augmented by views (possibly
recursive rules).

– Slots permit non-positional arguments. RuleML’s user-level metarole ‘slot’
takes a name-filler pair, accommodating RDF properties.

– Anchors provide object identity via webizing through URIs. Such “URI
grounding” is available in RuleML via dual attributes ‘wlab’ and ‘wref’,
corresponding to RDF’s ‘about’ and ‘resource’.

– Blank Nodes are local aliases for existing individuals without need for global
names. In RuleML, the F-logic/Flora-2 Skolem-constant approach [1] is used
to notate, generate, and refer to Blank Nodes.

Illustrating an RDF-like Business Rule 1:

<Implies>

<body>

<And>

<Atom>

<oid><Var>x</Var></oid>

<Rel>product</Rel>

<slot><Ind wref=":price"/><Var>y</Var></slot>

<slot><Ind wref=":weight"/><Var>z</Var></slot>

</Atom>

<Atom>

<Rel wref="swrlb:greaterThan"/><Var>y</Var><Data>200</Data>

</Atom>

<Atom>

220 Marcel Ball et al.

<Rel wref="swrlb:lessThan"/><Var>z</Var><Data>50</Data>

</Atom>

</And>

</body>

<head>

<Atom>

<oid><Var>x</Var></oid>

<Rel>product</Rel>

<slot><Ind wref=":shipping"/><Data>0</Data></slot>

</Atom>

</head>

</Implies>

3 Bidirectional Interpreters in Java

As part of the implementation of RuleML, a systen of bidirectional interpreters,
was created in Java. In particular, the OO jDREW reasoning engine [3] con-
tains two modes: a Bottom-Up (forward chaining) version, and a goal driven
top-down (backward chaining) version that works in a fashion similar to most
Prolog systems. Demo applications (interfaced through Java Web Start) are
available at http://www.jdrew.org/oojdrew/demo.html, and the source has been
made available for download. A Roadmap for Open Source OO jDREW De-
velopment has recently been outlined (http://mail.jdrew.org/pipermail/jdrew-
all/2005-June/000001.html). Principles, specifics, and extensions of the features
available in OO jDREW are detailed below.

3.1 jDREW Principles

The jDREW toolbox approach [2] provides the flexibility to quickly cope with
changes to the implementation of the evolving RuleML standard. There are util-
ities in jDREW for various tasks: reading files of RuleML statements into the
internal clause data structure, storing and manipulating clauses, unification of
clauses according to the positions of the selected literals, a basic resolution en-
gine, clause to clause subsumption and clause to clause-list subsumption, choice
point managers, priority queues for various reasoning tasks, and readable top-
level procedures.

Much of the flow of control is oriented around iterators, objects that maintain
the state of a partially completed computation. Thus you pay as you go when you
want the engine to perform the next step. The advantages of this architecture
are its consistency and efficiency. There is a common interface for many different
reasoning tasks, and there are few additional data structures introduced for
storing intermediate results, other than those required by the abstract reasoning
procedure. For instance, in the bottom-up system, solutions are generated one-
at-a-time, so asking for the next solution may cause the following steps: An
iterator will be asked to select the next clause in the so-called ‘new results’ list
that matches eligibility requirements (like not being already subsumed).

The OO jDREW Reference Implementation of RuleML 221

3.2 OO jDREW Slots

During the creation of the internal structures, the OO jDREW terms represent-
ing atoms and complex terms are normalized, producing the following order for
the parameters: oid (object identifier), positional parameters (in their original
order), the positional rest term, slotted parameters (in the encounter order), and
finally the slotted rest term. Since the ordering of slots within RuleML atoms
and complex terms does not carry information, any order can be imposed. In
OO jDREW, the slots are ordered based upon the sequence in which they are
initially encountered to permit the incremental addition of slots without any
reordering.

By using such a normalized form we are able to implement an efficient uni-
fication algorithm that has time complexity O(m + n) (where m and n are the
numbers of parameters), instead of O(m * n). In our algorithm we scan the two
lists of parameters – matching up roles (and positions in the case of positional
parameters) – and unify those parameters. If a role is present in one term but not
in the other then the unmatched role is added to a list of rest terms in case the
other has an appropriate rest term (otherwise unification fails). Such a collection
of rest terms is used to dynamically generate a Plex (RuleML’s generalization
of a list) to be assigned to the corresponding rest parameter.

3.3 OO jDREW Types

OO jDREW includes an order-sorted type system as a core component. This type
system allows the user to specify a partial order for a set of classes in RDFS via
their (multiple) superclasses, allowing for the reuse of lightweight taxonomies of
the Semantic Web. Currently, the system only models the taxonomic relation-
ships between the classes, and cannot model properties with their domain and
range restrictions. For example, the current system can model that ‘Car’ is a
‘Motor Vehicle’, but cannot model that a car must have a make, model, year,
etc.

By building an order-sorted type system into OO jDREW we are able to
restrict the search space to only those clauses that have the appropriate types
specified for their parameters, leading to a faster and more robust system than
one where types are reduced to unary predicate calls in the body.

Extensions to the type system are being considered that would expand its
modeling ability. In particular, the user could define a signature using RDFS
properties to specify that certain slots must be present for a typing to be valid.
We would then be able to prescribe that ‘Car’ has slots for at least make, model,
year, which is not possible in the current system.

3.4 OO jDREW OIDs

The current implementation of OO jDREW, version 0.88, has a preliminary
implementation of object identifiers (OIDs). Currently, OIDs are only supported
in an atomic formula (<Atom> in RuleML), either as a fact or as part of a

222 Marcel Ball et al.

rule (<Implies> in RuleML). In this version only symbolic names are allowed as
OIDs. The URI-valued wref and wlab attributes, which are part of the RuleML
specification, are currently not supported; this is primarily due to W3C issues
with the normaliztion of URIs, creating difficulties in determining what URIs
should be considered to be equivalent.

The open source roadmap for OO jDREW includes plans to extend support
for OIDs beyond their current level. It is envisioned that by the release of version
0.89, OIDs will be supported on levels other than atoms, such as for connectives
and performatives. Additionally, wlab and wref should be supported with a pre-
liminary URI normalization system, possibly implementated in OO RuleML [4]
itself.

3.5 OO jDREW Extensions

Negation-as-failure (Naf) has first been implemented in OO jDREW TD, and
recently introduced into OO jDREW BU for stratified programs. In bottom-up
mode, Naf attempts to look up its argument atom via a unifying fact (when no
other rule is applicable). If this look-up succeeds, hence the Naf fails, then this
rule will be deleted from the given list, else the rule will be partially evaluated
into one without Naf.

Equivalence classes have been implemented in OO jDREW BU for the sub-
language datalogeq (Datalog with Equality). For equality ground facts, a newly-
built data structure called EqualTable is used to map all equal individuals to
one equivalence class. For each equivalence class, we append a fresh symbol to
the original OO jDREW SymbolTable, and all equal individuals are redirected
to this new symbol. That is, the process of unification and resolution will deal
with this new symbol, representing the equivalence class as a whole.

Illustrating Naf and Equal with a Datalog-like Business Rule 2:

<Implies>

<head>

<Atom>

<Rel>discount</Rel>

<Var>customer</Var><Var>product</Var><Ind>5.0 percent</Ind>

</Atom>

</head>

<body>

<And>

<Atom><Rel>premium</Rel><Var>customer</Var></Atom>

<Atom><Rel>onsale</Rel><Var>product</Var></Atom>

<Naf>

<Atom><Rel>special</Rel><Var>product</Var></Atom>

</Naf>

</And>

</body>

</Implies>

The OO jDREW Reference Implementation of RuleML 223

<Equal><Ind>fatherOFtom</Ind><Ind>bob</Ind></Equal>

<Equal><Ind>fatherOFtom</Ind><Ind>uncleOFmary</Ind></Equal>

<Atom><Rel>premium</Rel><Ind>bob</Ind></Atom>

<Atom><Rel>onsale</Rel><Ind>clothes</Ind></Atom>

Results: discount("bob", clothes, "5.0 percent").

discount("uncleOFmary", clothes, "5.0 percent").

discount("fatherOFtom", clothes, "5.0 percent").

A detailed design of an indexing system has been completed for OO jDREW
(http://www.jdrew.org/oojdrew/docs/OOjDREWIndexDesign.pdf) that will in-
dex the combined positional and slotted parameters on the top-level of RuleML
atoms, along with their associated rest parameters. Once implemented, it should
provide a significant increase in efficiency for the common cases, without creating
too much overhead for the more unusal boundary cases.

4 Conclusions

RuleML has an open source implementation that is freely available and main-
tained as the standard evolves. The syntax of the family of sublanguages is spec-
ified by modular XML Schema definitions. The operational semantics of RuleML
is implemented by a set of bidirectional interpreters (OO jDREW) written in
Java for cross-platform compatibility. For interoperability with other standards,
translators have also been realized, primarily via XSLT.

References

1. Reasoning about Anonymous Resources and Meta Statements on the Semantic
Web, G. Yang and M. Kifer, In Journal on Data Semantics, Volume 1, Pages
69-97, 2003.

2. The Design of j-DREW: A Deductive Reasoning Engine for the Web, B. Spencer,
In Proceedings of the First CologNET Workshop on Component-Based Software
Development and Implementation Technology for Computational Logic Systems.
CBD ITCLS 2002, Madrid, Spain. September 20, 2002. pp. 155-166.

3. OO jDREW: Design and Implementation of a Reasoning Engine for the Seman-
tic Web, Marcel Ball, CS 4997, Faculty of Computer Science, University of New
Brunswick, Fredericton, Canada, April 2005.

4. Object-Oriented RuleML: User-Level Roles, URI Grounded Clauses, and Order-
Sorted Terms, H. Boley, In Proc. Rules and Rule Markup Languages for the Se-
mantic Web (RuleML-2003). Sanibel Island, Florida, LNCS 2876, Springer-Verlag,
October 2003.

Author Index

Alferes, José Júlio 30
Amador, Ricardo 30
Antoniou, Grigoris 160, 172

Baclawski, Kenneth 130
Bădică, Costin 193
Bădiţă, Adriana 193
Bailey, James 187
Ball, Marcel 218
Bassiliades, Nick 172
Berndtsson, Mikael 98
Bhansali, Sumit 113
Bichler, Martin 209
Boley, Harold 17, 218
Bry, François 187

de Bruijn, Jos 17
Dietrich, Jens 209

Eckert, Michael 187
Etzion, Opher 1

Fensel, Dieter 17

Ganzha, Maria 193
Gilat, Dagan 71
Giurca, Adrian 45
Governatori, Guido 145, 204
Grosof, Benjamin N. 113

Hirtle, David 218
Hoang, Duy Pham 145

Iordache, Alin 193

Józefowska, Joanna 84

Kifer, Michael 17
Kokar, Mieczyslaw M. 130
Kontopoulos, Efstratios 172

Ławrynowicz, Agnieszka 84
Letkowski, Jerzy J. 130
Łukaszewski, Tomasz 84

Matheus, Christopher J. 130
May, Wolfgang 30
Mei, Jing 218

Pan, Jeff Z. 199
Paprzycki, Marcin 193
Paschke, Adrian 209
Pătrânjan, Paula-Lavinia 187

Rao, Jinghai 56
Ronen, Royi 71
Rothblum, Ron 71

Sadeh, Norman 56
Sattar, Abdul 160
Seiriö, Marco 98
Sharon, Guy 71
Skarbovsky, Inna 71
Song, Insu 204
Spencer, Bruce 218
Stamou, Giorgos 199
Stephens, Susie 8
Stoilos, Giorgos 199

Topor, Rodney 160
Tzouvaras, Vassilis 199

Wagner, Gerd 45
Wang, Kewen 160

	Frontmatter
	Towards an Event-Driven Architecture: An Infrastructure for Event Processing Position Paper
	Enabling Semantic Web Inferencing with Oracle Technology: Applications in Life Sciences
	A Realistic Architecture for the Semantic Web
	Active Rules in the Semantic Web: Dealing with Language Heterogeneity
	Towards an Abstract Syntax and Direct-Model Theoretic Semantics for RuleML
	A Semantic Web Framework for Interleaving Policy Reasoning and External Service Discovery
	Reactive Rules-Based Dependency Resolution for Monitoring Dynamic Environments
	Towards Discovery of Frequent Patterns in Description Logics with Rules
	Design and Implementation of an ECA Rule Markup Language
	Extending the SweetDeal Approach for e-Procurement Using SweetRules and RuleML
	Using SWRL and OWL to Capture Domain Knowledge for a Situation Awareness Application Applied to a Supply Logistics Scenario
	A Semantic Web Based Architecture for e-Contracts in Defeasible Logic
	Merging and Aligning Ontologies in dl-Programs
	A Visual Environment for Developing Defeasible Rule Bases for the Semantic Web
	Flavours of XChange, a Rule-Based Reactive Language for the (Semantic) Web
	Rule-Based Framework for Automated Negotiation: Initial Implementation
	Uncertainty and RuleML Rulebases: A Preliminary Report
	Nested Rules in Defeasible Logic
	ContractLog: An Approach to Rule Based Monitoring and Execution of Service Level Agreements
	The OO jDREW Reference Implementation of RuleML
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

